skip to main content
10.1145/192161.192179acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article
Free Access

A framework for the analysis of error in global illumination algorithms

Authors Info & Claims
Published:24 July 1994Publication History

ABSTRACT

In this paper we identify sources of error in global illumination algorithms and derive bounds for each distinct category. Errors arise from three sources: inaccuracies in the boundary data, discretization, and computation. Boundary data consists of surface geometry, reflectance functions, and emission functions, all of which may be perturbed by errors in measurement or simulation, or by simplifications made for computational efficiency. Discretization error is introduced by replacing the continuous radiative transfer equation with a finite-dimensional linear system, usually by means of boundary elements and a corresponding projection method. Finally, computational errors perturb the finite-dimensional linear system through imprecise form factors, inner products, visibility, etc., as well as by halting iterative solvers after a finite number of steps. Using the error taxonomy introduced in the paper we examine existing global illumination algorithms and suggest new avenues of research.

References

  1. 1.ANSELONE, P. M. Convergence and error bounds for approximate solutions of integral and operator equations. In Error in Digital Computation, L. B. Rall, Ed., vol. 2. John Wiley &Sons, 1965, pp. 231-252.Google ScholarGoogle Scholar
  2. 2.ATKINSON, K. E. A Survey of Numerical Methods for the Solution of Fredholm IntegralEquations of the SecondKind. Society for Industrial and Applied Mathematics, Philadelphia, 1976.Google ScholarGoogle Scholar
  3. 3.AUPPERLE, L., AND HANRAHAN, P. A hierarchical illumination algorithm for surfaces with glossy reflection. In Computer Graphics Proceedings (1993), Annual Conference Series, ACM SIGGRAPH, pp. 155-162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. 4.BATEMAN, H. Report on the history and present state of the theory of integral equations. Report of the 18th Meeting of the British Association for the Advancement of Science (1910), 345-424.Google ScholarGoogle Scholar
  5. 5.BAUM, D. R., RUSHMEIER, H. E., AND WINGET, J. M. Improving radiosity solutions through the use of analytically determined formfactors. Computer Graphics 23, 3 (July 1989), 325-334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. 6.CHANDRASEKAR, S. Radiative Transfer. Dover Publications, New York, 1960.Google ScholarGoogle Scholar
  7. 7.COHEN, M. F., CHEN, S. E., WALLACE, J. R., AND GREENBERG, D. P. A progressive refinement approach to fast radiosity image generation. Computer Graphics 22, 4 (August 1988), 75-84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 8.COHEN, M. F., AND GREENBERG, D. P. The hemi-cube: A radiosity solution for complex environments. Computer Graphics 19, 3 (July 1985), 75-84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. 9.GOLBERG, M. A. Asurvey of numerical methods for integral equations. In Solution methods for integral equations: Theory and applications , M. A. Golberg, Ed. Plenum Press, New York, 1979, pp. 1-58.Google ScholarGoogle ScholarCross RefCross Ref
  10. 10.GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BATTAILE, B. Modeling the interaction of light between diffuse surfaces. Computer Graphics 18, 3 (July 1984), 213-222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. 11.GORTLER, S. J., AND COHEN, M. F. Radiosity and relaxation methods. Tech. Rep. TR 408-93, Princeton University, 1993.Google ScholarGoogle Scholar
  12. 12.GORTLER, S. J., SCHR~DER, P., COHEN, M. F., AND HANRAHAN, P. Wavelet radiosity. In Computer Graphics Proceedings (1993), Annual Conference Series, ACM SIGGRAPH, pp. 221-230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13.HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. A rapid hierarchical radiosity algorithm. Computer Graphics 25, 4 (July 1991), 197-206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. 14.HECKBERT, P. S. Simulating Global Illumination Using Adaptive Meshing. PhD thesis, University of California, Berkeley, June 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. 15.HILDEBRAND, F. B. Methods of Applied Mathematics. Prentice-Hall, New York, 1952.Google ScholarGoogle Scholar
  16. 16.HOWELL, J. R. A Catalog of Radiation Configuration Factors. McGraw-Hill, New York, 1982.Google ScholarGoogle Scholar
  17. 17.IMMEL, D. S., COHEN, M. F., AND GREENBERG, D. P. A radiosity method for non-diffuse environments. Computer Graphics 20, 4 (August 1986), 133-142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. 18.KAJIYA, J. T. The rendering equation. Computer Graphics 20, 4 (August 1986), 143-150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. 19.KANTOROVICH, L., AND AKILOV, G. P. Functional Analysis in Normed Spaces. Pergamon Press, New York, 1964.Google ScholarGoogle Scholar
  20. 20.KATO, T. Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1966.Google ScholarGoogle Scholar
  21. 21.KRASNOSEL'SKII, M. A., VAINIKKO, G. M., ZABREIKO, P. P., RUTITSKII, Y. B., AND STETSENKO, V. Y. Approximate Solution of Operator Equations. Wolters-Noordhoff, Groningen, The Netherlands, 1972. Translated by D. Louvish.Google ScholarGoogle Scholar
  22. 22.KRESS, R. Linear Integral Equations. Springer-Verlag, New York, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  23. 23.LINZ, P. Theoretical Numerical Analysis, an Introduction to Advanced Techniques. John Wiley ~ Sons, New York, 1979.Google ScholarGoogle Scholar
  24. 24.LISCHINSKI, D., TAMPIERI, F., AND GREENBERG, D. P. Discontinuity meshing for accurate radiosity. IEEE Computer Graphics and Applications 12, 6 (November 1992), 25-39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25.LISCHINSKI, D., TAMPIERI, F., AND GREENBERG, D. P. Combining hierarchical radiosity and discontinuity meshing. In Computer Graphics Proceedings (1993), Annual Conference Series, ACM SIGGRAPH, pp. 199-208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. 26.MACKERLE, J., AND BREBBIA, C. A., Eds. The Boundary Element Reference Book. Springer-Verlag, New York, 1988.Google ScholarGoogle Scholar
  27. 27.MODEST, M. F. Radiative Heat Transfer. McGraw-Hill, New York, 1993.Google ScholarGoogle Scholar
  28. 28.ORTEGA, J. M. Numerical Analysis, a Second Course. Academic Press, New York, 1972.Google ScholarGoogle Scholar
  29. 29.PHILLIPS, J. L. The use of collocation as a projection methodfor solving linear operator equations. SIAM Journal on Numerical Analysis 9, 1 (1972), 14-28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. 30.PLANCK, M. The Theory of Heat Radiation. Dover Publications, New York, 1988.Google ScholarGoogle Scholar
  31. 31.POLYAK, G. L. Radiative transfer between surfaces of arbitrary spatial distribution of reflection. In Convective and Radiative Heat Transfer. Publishing House of the Academy of Sciences of the USSR, Moscow, 1960.Google ScholarGoogle Scholar
  32. 32.RUDIN, W. Functional Analysis. McGraw-Hill, New York, 1973.Google ScholarGoogle Scholar
  33. 33.RUSHMEIER, H. E., PATTERSON, C., AND VEERASAMY, A. Geometric simplification for indirect illumination calculations. Graphics Interface '93 (May 1993), 227-236.Google ScholarGoogle Scholar
  34. 34.SCHR~DER, P., AND HANRAHAN, P. On the form factor between two polygons. In Computer Graphics Proceedings (1993), Annual Conference Series, ACM SIGGRAPH, pp. 163-164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. 35.SILLION, F., ARVO, J., WESTIN, S., AND GREENBERG, D. P. A global illumination solution for general reflectance distributions. Computer Graphics 25, 4 (July 1991), 187-196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. 36.TOULOUKIAN, Y. S., Ed. Retrieval Guideto ThermophysicalProperties Research Literature, second ed. McGraw-Hill, New York, 1968.Google ScholarGoogle Scholar
  37. 37.TROUTMAN, R., AND MAX, N. L. Radiosity algorithms using higherorder finite element methods. In Computer Graphics Proceedings (1993), Annual Conference Series, ACM SIGGRAPH, pp. 209-212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. 38.WALLACE, J., ELMQUIST, K., AND HAINES, E. A ray tracing algorithm for progressive radiosity. Computer Graphics 23, 3 (July 1989), 315- 324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. 39.WARD, G. J. Measuring andmodeling anisotropic reflection. Computer Graphics 26, 2 (July 1992), 265-272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. 40.WESTIN, S., ARVO, J., AND TORRANCE, K. Predicting reflectance functions from complex surfaces. Computer Graphics 26, 2 (July 1992), 255-264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. 41.ZATZ, H. Galerkin radiosity: Ahigher order solution method for global illumination. In Computer Graphics Proceedings (1993), Annual Conference Series, ACM SIGGRAPH, pp. 213-220. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A framework for the analysis of error in global illumination algorithms

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader