skip to main content
10.1145/1978942.1979173acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Rock & rails: extending multi-touch interactions with shape gestures to enable precise spatial manipulations

Published:07 May 2011Publication History

ABSTRACT

Direct touch manipulations enable the user to interact with the on-screen content in a direct and easy manner closely mimicking the spatial manipulations in the physical world. However, they also suffer from well-known issues of precision, occlusion and an inability to isolate different degrees of freedom in spatial manipulations. We present a set of interactions, called Rock & Rails, that augment existing direct touch manipulations with shape-based gestures, thus providing on-demand gain control, occlusion avoidance, and separation of constraints in 2D manipulation tasks. Using shape gestures in combination with direct-manipulations allows us to do this without ambiguity in detection and without resorting to manipulation handles, which break the direct manipulation paradigm. Our set of interactions were evaluated by 8 expert graphic designers and were found to be easy to learn and master, as well as effective in accomplishing a precise graphical layout task.

Skip Supplemental Material Section

Supplemental Material

paper590.wmv

wmv

55.1 MB

References

  1. Albinsson, P. and Zhai, S. 2003. High precision touch screen interaction. CHI '03. p. 105--"112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agarawala, A. and Balakrishnan, R. 2006. Keepin' it real: Pushing the desktop metaphor with physics, piles and the pen. In Proc. of ACM CHI '06. p. 1283--"1292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Apted, T., Kay, J., and Quigley, A. 2006. Tabletop sharing of digital photographs for the elderly. CHI '06. p. 781--"790. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baudel, T., and Beaudouin-Lafon, M. 1993. Charade: remote control of objects using free-hand gestures. Communications of the ACM, 36(7). p. 28--"35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Benko, H., Wilson, A. D., and Baudisch, P. 2006. Pre-cise selection techniques for multi-touch screens. In Proc. of ACM CHI '06. p. 1263--"1272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brandl, P., Forlines, C., Wigdor, D., Haller, M., and Shen, C. 2008. Combining and measuring the benefits of bimanual pen and direct-touch interaction on horizontal interfaces. In Proc. of Advanced Visual Interfaces (ACM AVI '08). p. 154--"161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buxton, W. 1986. Chunking and phrasing and the design of human-computer dialogues. In Proc. of the IFIP World Computer Congress. p. 475--"480.Google ScholarGoogle Scholar
  8. Cao, X., et al. 2008 ShapeTouch: Leveraging contact shape on interactive surfaces. ITS '08, p. 129--"136.Google ScholarGoogle Scholar
  9. Forlines, C., Wigdor, D., Shen, C., and Balakrishnan, R. 2007. Direct-touch vs. mouse input for tabletop displays. In Proc. of ACM CHI '07. p. 647--"656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Freeman, D., et al. 2009. ShadowGuides: Visualizations for in-situ learning of multi-touch and whole-hand gestures. ITS '09. p. 165--"172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Geixler, J. 1998. Shuffle, throw or take it! Working efficiently with an interactive wall. CHI '98. p. 265--"266.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Grossman, T., Wigdor, D., and Balakrishnan, R. 2004. Multi-finger gestural interaction with 3-D volumetric displays. In Proc. of ACM UIST '04. p. 61--"70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Guiard, Y. 1987. Asymmetric division of labor in human skilled bimanual action: The kinematic chain as a model. Journal of Motor Behavior, 19(4). p. 486--"517.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hancock, M. S., et al. 2006. Rotation and translation mechanisms for tabletop interaction. ITS '06. p. 79--"88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Rodenhouse, J., Wilson, A., Benko, H., and Buxton, B. 2010. Pen + Touch = New Tools. UIST '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Igarashi, T., Moscovich, T., Hughes, J.F. 2005. As-rigid-as-possible shape manipulation. ACM Transac-tions on Computer Graphics, 24(3), ACM SIGGRAPH '05. p. 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jacob, R., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., and Zigelbaum, J. 2008. Reality-based interaction: A framework for post-WIMP interfaces. In Proc. Of ACM CHI '08. p. 201--"210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kruger, R., Carpendale, S., Scott, S. and Greenberg, S. 2003. How people use orientation on tables: compre-hension, coordination and communication. In Proc. of ACM SIGGROUP '03. p. 369--"378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kurtenbach, G. The Design and Evaluation of Marking Menus. Dept. of Computer Science, U Toronto. 1993.Google ScholarGoogle Scholar
  20. Malik, S., Ranjan, A., and Balakrishnan, R. 2005. Interacting with large displays from a distance with vision-tracked multi-finger gestural input. In Proc. of ACM UIST '05. p. 43--"52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Morris, M.R., Paepcke, A., Winograd, T., and Stam-berger, J. 2006. TeamTag: Exploring centralized versus replicated controls for co-located tabletop groupware. In Proc. of ACM CHI '06. p. 1273--"1282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Morris, M.R., Wobbrock, J., and Wilson, A. 2010. Understanding users' preferences for surface gestures. In Proc. of Graphics Interface (GI '10). p. 261--"268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nacenta, M. A., Baudisch, P., Benko, H., and Wilson, A. 2009. Separability of spatial manipulations in multi-touch interfaces. In Proc. of Graphics Interface (GI '09). p. 175--"182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pierce, J.S., Stearns, B., and Pausch, R. 1999. Two handed manipulation of voodoo dolls in virtual environments. In Proc. of Interactive 3D Graphics (I3D '99). p. 141--"145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Potter, R.L., L.J. Weldon, and B. Shneiderman. 1988. Improving the accuracy of touch screens: an experi-mental evaluation of three strategies. In Proc. of ACM CHI '88. p. 27--"32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Raisamo, R., Raiha, K.-J. 1996. A new direct manipulation technique for aligning objects in drawing programs. UIST 1996, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rekimoto, J. 2002. SmartSkin: An infrastructure for free-hand manipulation on interactive surfaces. CHI '02. p. 113--"120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shen, C., Vernier, F. D., Forlines, C., and Ringel, M. 2004. DiamondSpin: an extensible toolkit for around-the-table interaction. CHI '04. p. 167--"174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shneiderman, B. 1983. Direct manipulation: a step beyond programming languages. IEEE Computer 16(8) (August 1983). p. 57--"69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tan, D., Stefanucci, J.K., Proffitt, D., and Pausch, R. 2002. Kinesthesis Aids Human Memory. Extended Abstracts ACM CHI '02. p. 806--"807. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Vogel, D. and Baudisch, P. 2007. Shift: A technique for operating pen-based interfaces using touch. In Proc. of ACM CHI '07. p. 657--"666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., Shen, C. 2007. LucidTouch: A see-through mobile device. In Proc. of ACM UIST '07. p. 269--"278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wilson, A. D., Izadi, S., Hilliges, O., Garcia-Mendoza, A., and Kirk, D. 2008. Bringing physics to the surface. In Proc. of ACM UIST '08. p. 67--"76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wu, M. and Balakrishnan, R. Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. In Proc. of ACM UIST '03. p. 193--"202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wu, M., Shen, C., Ryall, K., Forlines, C., and Bala-krishnan, R. Gesture registration, relaxation, and reuse for multi-point direct-touch surfaces. ITS'06. p. 183--"190.Google ScholarGoogle Scholar
  36. Wobbrock, J.O., Morris, M.R. and Wilson, A.D. 2009. User-defined gestures for surface computing. In Proc. of ACM CHI '09. p. 1083--"1092. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yatani, K., Partridge, K., Bern, M., and Newman, M. W. 2008. Escape: a target selection technique using visually-cued gestures. In Proc. of ACM CHI '08. p. 285--"294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zhai, S., Milgram, P. 1998. Quantifying coordination in multiple DOF movement and its application to evaluating 6 DOF input devices. CHI '98, 320--327. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Rock & rails: extending multi-touch interactions with shape gestures to enable precise spatial manipulations
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
        May 2011
        3530 pages
        ISBN:9781450302289
        DOI:10.1145/1978942

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 May 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        CHI '11 Paper Acceptance Rate410of1,532submissions,27%Overall Acceptance Rate6,199of26,314submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader