skip to main content
10.1145/2000064.2000116acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
research-article

The role of optics in future high radix switch design

Published:04 June 2011Publication History

ABSTRACT

For large-scale networks, high-radix switches reduce hop and switch count, which decreases latency and power. The ITRS projections for signal-pin count and per-pin bandwidth are nearly flat over the next decade, so increased radix in electronic switches will come at the cost of less per-port bandwidth. Silicon nanophotonic technology provides a long-term solution to this problem. We first compare the use of photonic I/O against an all-electrical, Cray YARC inspired baseline. We compare the power and performance of switches of radix 64, 100, and 144 in the 45, 32, and 22 nm technology steps. In addition with the greater off-chip bandwidth enabled by photonics, the high power of electrical components inside the switch becomes a problem beyond radix 64.

We propose an optical switch architecture that exploits highspeed optical interconnects to build a flat crossbar with multiplewriter, single-reader links. Unlike YARC, which uses small buffers at various stages, the proposed design buffers only at input and output ports. This simplifies the design and enables large buffers, capable of handling ethernet-size packets. To mitigate head-of-line blocking and maximize switch throughput, we use an arbitration scheme that allows each port to make eight requests and use two grants. The bandwidth of the optical crossbar is also doubled to to provide a 2x internal speedup. Since optical interconnects have high static power, we show that it is critical to balance the use of optical and electrical components to get the best energy efficiency. Overall, the adoption of photonic I/O allows 100,000 port networks to be constructed with less than one third the power of equivalent all-electronic networks. A further 50% reduction in power can be achieved by using photonics within the switch components. Our best optical design performs similarly to YARC for small packets while consuming less than half the power, and handles 80% more load for large message traffic.

Skip Supplemental Material Section

Supplemental Material

isca_9a_2.mp4

mp4

101 MB

References

  1. 2010. Mike Parker, personal communication.Google ScholarGoogle Scholar
  2. J. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber. HyperX: Topology, Routing, and Packaging of Efficient Large-Scale Networks. Supercomputing, Nov. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu. Devices and architectures for photonic chip-scale integration. Applied Physics A: Materials Science & Processing, 95(4):989--997, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  4. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha. A Fully Integrated 20-Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13 micron CMOS SOI Technology. IEEE Journal of Solid-State Circuits, 41(25):2945--2955, Dec 2006.Google ScholarGoogle ScholarCross RefCross Ref
  5. N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro, 26(4):52--60, Jul/Aug 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Broadcom. BCM56840 Series High Capacity StrataXGS® Ethernet Switch Series. http://www.broadcom.com/products/Switching/Data-Center/BCM56840-Series.Google ScholarGoogle Scholar
  7. L. Chen, K. Preston, S. Manipatruni, and M. Lipson. Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Optical Express, 17(17):15248--15256, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  8. U. Cummings. FocalPoint: A Low-Latency, High-Bandwidth Ethernet Switch Chip. In Hot Chips 18, Aug 2006.Google ScholarGoogle Scholar
  9. G. Dimitrakopoulos and K. Galanopoulos. Fast Arbiters for On-Chip Network Switches. In International Conference on Computer Design, pages 664--670, Oct 2008.Google ScholarGoogle Scholar
  10. K. Fukuda, H. Yamashita, G. Ono, R. Nemoto, E. Suzuki, T. Takemoto, F. Yuki, and T. Saito. A 12.3mW 12.5Gb/s complete transceiver in 65nm CMOS. In ISSCC, pages 368--369, Feb 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. J. Hewlett, J. D. Love, and V. V. Steblina. Analysis and design of highly broad-band, planar evanescent couplers. Optical and Quantum Electronics, 28:71--81, 1996. 10.1007/BF00578552.Google ScholarGoogle ScholarCross RefCross Ref
  12. R. Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis, Stanford University, August 2003.Google ScholarGoogle Scholar
  13. M. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing on a space-division packet switch. Communications, IEEE Transactions on, 35(12):1347--1356, Dec. 1987.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Kim, W. J. Dally, and D. Abts. Adaptive Routing in High-Radix Clos Network. In SC'06, Nov 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Kim, W. J. Dally, and D. Abts. Flattened Butterfly: a Cost-efficient Topology for High-Radix Networks. In ISCA, Jun 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-Driven, Highly-Scalable Dragonfly Topology. In ISCA, Jun 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microarchitecture of a High-Radix Router. In ISCA, Jun 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A. Watkins, and D. H. Albonesi. Leveraging Optical Technology in Future Bus-based Chip Multiprocessors. In MICRO, pages 492--503, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers. Mode-locked silicon evanescent lasers. Optics Express, 15(18):11225, Sep 2007.Google ScholarGoogle ScholarCross RefCross Ref
  20. P. M. Kogge (editor). Exascale computing study: Technology challenges in achieving exascale systems. Technical Report TR-2008-13, University of Notre Dame, 2008.Google ScholarGoogle Scholar
  21. A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham. The integration of silicon photonics and vlsi electronics for computing systems. In Photonics in Switching, 2009. PS '09. International Conference on, pages 1--4, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Lipson. Guiding, Modulating, and Emitting Light on Silicon-Challenges and Opportunities. Journal of Lightwave Technology, 23(12):4222--4238, Dec 2005.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. Mora, J. Flich, J. Duato, P. López, E. Baydal, and O. Lysne. Towards an efficient switch architecture for high-radix switches. In Proceedings of the 2006 ACM/IEEE symposium on Architecture for Networking and Communications Systems, pages 11--20, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In MICRO, Dec 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Palmer, J. Poulton, W. J. Dally, J. Eyles, A. M. Fuller, T. Greer, M. Horowitz, M. Kellam, F. Quan, and F. Zarkeshvarl. A 14mW 6.25Gb/s Transceiver in 90nm CMOS for Serial Chip-to-Chip Communications. In ISSCC, Feb 2007.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Scott, D. Abts, J. Kim, and W. J. Dally. The Black Widow High-Radix Clos Network. In ISCA, Jun 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Semiconductor Industries Association. International Technology Roadmap for Semiconductors. http://www.itrs.net, 2009 Edition.Google ScholarGoogle Scholar
  28. A. Shacham, K. Bergman, and L. P. Carloni. On the Design of a Photonic Network-on-Chip. In NOCS, pages 53--64, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. Vantrease, N. Binkert, R. S. Schreiber, and M. H. Lipasti. Light Speed Arbitration and Flow Control for Nanophotonic Interconnects. In MICRO, Dec 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young. Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics. 2009.Google ScholarGoogle Scholar
  31. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson. Micrometre-Scale Silicon Electro-Optic Modulator. Nature, 435:325--327, May 2005.Google ScholarGoogle Scholar

Index Terms

  1. The role of optics in future high radix switch design

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISCA '11: Proceedings of the 38th annual international symposium on Computer architecture
      June 2011
      488 pages
      ISBN:9781450304726
      DOI:10.1145/2000064
      • cover image ACM SIGARCH Computer Architecture News
        ACM SIGARCH Computer Architecture News  Volume 39, Issue 3
        ISCA '11
        June 2011
        462 pages
        ISSN:0163-5964
        DOI:10.1145/2024723
        Issue’s Table of Contents

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 June 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate543of3,203submissions,17%

      Upcoming Conference

      ISCA '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader