skip to main content
research-article

Interactive hair rendering and appearance editing under environment lighting

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

We present an interactive algorithm for hair rendering and appearance editing under complex environment lighting represented as spherical radial basis functions (SRBFs). Our main contribution is to derive a compact 1D circular Gaussian representation that can accurately model the hair scattering function introduced by [Marschner et al. 2003]. The primary benefit of this representation is that it enables us to evaluate, at run-time, closed-form integrals of the scattering function with each SRBF light, resulting in efficient computation of both single and multiple scatterings. In contrast to previous work, our algorithm computes the rendering integrals entirely on the fly and does not depend on expensive pre-computation. Thus we allow the user to dynamically change the hair scattering parameters, which can vary spatially. Analyses show that our 1D circular Gaussian representation is both accurate and concise. In addition, our algorithm incorporates the eccentricity of the hair. We implement our algorithm on the GPU, achieving interactive hair rendering and simultaneous appearance editing under complex environment maps for the first time.

Skip Supplemental Material Section

Supplemental Material

References

  1. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. 2006. Real-time BRDF editing in complex lighting. ACM Trans. Graph. 25, 3, 945--954. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bonneel, N., Paris, S., van de Panne, M., Durand, F., and Drettakis, G. 2009. Single photo estimation of hair appearance. Computer Graphics Forum 28, 4, 1171C-1180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. In Proc. of ACM SIGGRAPH, 369--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. d'Eon, E., Francois, G., Hill, M., Letteri, J., and Aubry, J.-M. 2011. An energy-conserving hair reflectance model. Computer Graphics Forum 30, 4, 1181--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Green, P., Kautz, J., and Durand, F. 2007. Efficient reflectance and visibility approximations for environment map rendering. Computer Graphics Forum 26, 3, 495--502.Google ScholarGoogle ScholarCross RefCross Ref
  6. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Proc. of ACM SIGGRAPH, 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kim, T.-Y., and Neumann, U. 2001. Opacity shadow maps. In Proc. of Eurographics Rendering Workshop, 177--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Lokovic, T., and Veach, E. 2000. Deep shadow maps. In Proc. of ACM SIGGRAPH, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Marschner, S. R., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM Trans. Graph. 22, 3, 780--791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mertens, T., Kautz, J., Bekaert, P., and Van Reeth, F. 2004. A self-shadow algorithm for dynamic hair using density clustering. In SIGGRAPH 2004 Sketches, 44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. Graph. 25, 3, 1067--1074. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Moon, J. T., Walter, B., and Marschner, S. 2008. Efficient multiple scattering in hair using spherical harmonics. ACM Trans. Graph. 27, 3, 31:1--31:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Navarro, F., Gutierrez, D., and Sern, F. 2009. Interactive hdr lighting of dynamic participating media. The Visual Computer 25, 4, 339--347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair Photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1--30:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ren, Z., Zhou, K., Li, T., Hua, W., and Guo, B. 2010. Interactive hair rendering under environment lighting. ACM Trans. Graph. 29, 4, 55:1--55:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Sadeghi, I., Pritchett, H., Jensen, H. W., and Tamstorf, R. 2010. An artist friendly hair shading system. ACM Trans. Graph. 29, 4, 56:1--56:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Schlick, C. 1994. An inexpensive BRDF model for physically-based rendering. Computer Graphics Forum 13, 3, 233--246.Google ScholarGoogle ScholarCross RefCross Ref
  19. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3, 64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Shinya, M., Shiraishi, M., Dobashi, Y., Iwasaki, K., and Nishita, T. 2010. A simplified plane-parallel scattering model and its application to hair rendering. Pacific Conference on Computer Graphics and Applications, 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Silva, P., Bando, Y., Chen, B.-Y., and Nishita, T. 2010. Curling and clumping fur represented by texture layers. The Visual Computer 26, 6, 659--667. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sintorn, E., and Assarsson, U. 2008. Real-time approximate sorting for self shadowing and transparency in hair rendering. In Proc. of I3D, 157--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sintorn, E., and Assarsson, U. 2009. Hair self shadowing and transparency depth ordering using occupancy maps. In Proc. of I3D, 67--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., and Guo, B. 2007. Interactive relighting with dynamic BRDFs. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sun, X., Zhou, K., Stollnitz, E., Shi, J., and Guo, B. 2008. Interactive relighting of dynamic refractive objects. ACM Trans. Graph. 27, 3, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tsai, Y.-T., and Shih, Z.-C. 2006. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25, 3, 967--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, R., Cheslack-Postava, E., Wang, R., Luebke, D., Chen, Q., Hua, W., Peng, Q., and Bao, H. 2008. Real-time editing and relighting of homogeneous translucent materials. Vis. Comput. 24, 7, 565--575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wang, J., Ren, P., Gong, M., Snyder, J., and Guo, B. 2009. All-frequency rendering of dynamic, spatially-varying reflectance. ACM Trans. Graph. 28, 5, 133:1--133:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE Transactions on Visualization and Computer Graphics 13, 2, 213--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Xu, K., Gao, Y., Li, Y., Ju, T., and Hu, S.-M. 2007. Real-time homogenous translucent material editing. Computer Graphics Forum 26, 3, 545--552.Google ScholarGoogle ScholarCross RefCross Ref
  31. Yuksel, C., and Keyser, J. 2008. Deep opacity maps. Computer Graphics Forum 27, 2, 675--680.Google ScholarGoogle ScholarCross RefCross Ref
  32. Zinke, A., and Weber, A. 2006. Global illumination for fiber based geometries. In SIACG 2006.Google ScholarGoogle Scholar
  33. Zinke, A., and Weber, A. 2007. Light scattering from filaments. IEEE Transactions on Visualization and Computer Graphics 13, 2, 342--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. Graph. 27, 3, 32:1--32:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zinke, A., Rump, M., Lay, T., Weber, A., Andriyenko, A., and Klein, R. 2009. A practical approach for photometric acquisition of hair color. ACM Trans. Graph. 28, 5, 165:1--165:9. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive hair rendering and appearance editing under environment lighting

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader