skip to main content
research-article

All-frequency rendering of dynamic, spatially-varying reflectance

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

We describe a technique for real-time rendering of dynamic, spatially-varying BRDFs in static scenes with all-frequency shadows from environmental and point lights. The 6D SVBRDF is represented with a general microfacet model and spherical lobes fit to its 4D spatially-varying normal distribution function (SVNDF). A sum of spherical Gaussians (SGs) provides an accurate approximation with a small number of lobes. Parametric BRDFs are fit on-the-fly using simple analytic expressions; measured BRDFs are fit as a preprocess using nonlinear optimization. Our BRDF representation is compact, allows detailed textures, is closed under products and rotations, and supports reflectance of arbitrarily high specularity. At run-time, SGs representing the NDF are warped to align the half-angle vector to the lighting direction and multiplied by the microfacet shadowing and Fresnel factors. This yields the relevant 2D view slice on-the-fly at each pixel, still represented in the SG basis. We account for macro-scale shadowing using a new, nonlinear visibility representation based on spherical signed distance functions (SSDFs). SSDFs allow per-pixel interpolation of high-frequency visibility without ghosting and can be multiplied by the BRDF and lighting efficiently on the GPU.

Skip Supplemental Material Section

Supplemental Material

References

  1. Arvo, J., Torrance, K., and Smits, B. 1994. A framework for the analysis of error in global illumination algorithms. In Proceedings of SIGGRAPH 1994, ACM, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ashikhmin, M., and Shirley, P. 2000. An anisotropic Phong BRDF model. Journal of Graphics Tools 5, 2, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ashikmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proceedings of SIGGRAPH 2000, ACM, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. 2006. Real-time BRDF editing in complex lighting. ACM Transactions on Graphics 25, 3, 945--954. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ben-Artzi, A., Egan, K., Ramamoorthi, R., and Durand, F. 2008. A precomputed polynomial representation for interactive BRDF editing with global illumination. ACM Transactions on Graphics 27, 2, 13:1--13:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures. In Computer Graphics (Proceedings of SIGGRAPH 77), ACM, vol. 11, 192--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cheslack-Postava, E., Wang, R., Akerlund, O., and Pellacini, F. 2008. Fast, realistic lighting and material design using nonlinear cut approximation. ACM Transactions on Graphics 27, 5, 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cook, R. L., and Torrance, K. E. 1981. A reflectance model for computer graphics. In Computer Graphics (Proceedings of SIGGRAPH 81), ACM, vol. 1, 307--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Green, P., Kautz, J., Matusik, W., and Durand, F. 2006. View-dependent precomputed light transport using nonlinear gaussian function approximations. In I3D '06: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, ACM, 7--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Green, P., Kautz, J., and Durand, F. 2007. Efficient reflectance and visibility approximations for environment map rendering. Computer Graphics Forum (Proc. EUROGRAPHICS) 26, 3, 495--502.Google ScholarGoogle ScholarCross RefCross Ref
  11. Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency domain normal map filtering. ACM Transactions on Graphics 26, 3, 28:1--28:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kautz, J., Vázquez, P.-P., Heidrich, W., and Seidel, H.-P. 2000. Unified approach to prefiltered environment maps. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, Springer-Verlag, London, UK, 185--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Křivánek, J., and Colbert, M. 2008. Real-time shading with filtered importance sampling. Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering) 27, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics 25, 3, 735--745. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Liu, X., Sloan, P. P., Shum, H. Y., and Snyder, J. 2004. All-frequency precomputed radiance transfer for glossy objects. In Proceedings of the Eurographics Symposium on Rendering, Eurographics Association, 337--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mahajan, D., Tseng, Y.-T., and Ramamoorthi, R. 2008. An analysis of the in-out BRDF factorization for view-dependent relighting. In Eurographics Symposium on Rendering, vol. 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Transactions on Graphics 22, 3, 759--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. McAllister, D. K., Lastra, A., and Heidrich, W. 2002. Efficient rendering of spatial bi-directional reflectance distribution functions. In HWWS '02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, Eurographics Association, Aire-la-Ville, Switzerland, 79--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. ACM Transactions on Graphics 22, 3, 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triple product wavelet integrals for all-frequency relighting. ACM Transactions on Graphics 23, 3, 477--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Rendering Techniques 2005: 16th Eurographics Workshop on Rendering, 117--126. Google ScholarGoogle ScholarCross RefCross Ref
  22. Nocedal, J., and Wright, S. J. 1999. Numerical optimization. Springer Series in Operations Research, Springer-Verlag.Google ScholarGoogle Scholar
  23. Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan, P.-P., Bao, H., Peng, Q., and Guo, B. 2006. Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Transactions on Graphics 25, 3, 977--986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Shirley, P., and Chiu, K. 1997. A low distortion map between disk and square. J. Graph. Tools 2, 3, 45--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proceedings of SIGGRAPH 2002, ACM, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sloan, P.-P., Liu, X., Shum, H.-Y., and Snyder, J. 2003. Bi-scale radiance transfer. ACM Transactions on Graphics 22, 3 (July), 370--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sloan, P.-P., Luna, B., and Snyder, J. 2005. Local, deformable precomputed radiance transfer. ACM Transactions on Graphics 24, 3, 1216--1224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., and Guo, B. 2007. Interactive relighting with dynamic BRDFs. ACM Transactions on Graphics 26, 3, 27:1--27:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. In Journal of the Oprical Society of America, vol. 57.Google ScholarGoogle Scholar
  30. Tsai, Y.-T., and Shih, Z.-C. 2006. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Transactions on Graphics 25, 3, 967--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tsai, Y.-T., Chang, C.-C., Jiang, Q.-Z., and Weng, S.-C. 2008. Importance sampling of products from illumination and BRDF using spherical radial basis functions. Vis. Comput. 24, 7, 817--826. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: a scalable approach to illumination. ACM Transactions on Graphics 24, 3, 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Transactions on Graphics 25, 3, 1081--1088. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wang, R., Tran, J., and Luebke, D. 2004. All-frequency relighting of non-diffuse objects using separable BRDF approximation. In Rendering Techniques, Eurographics Association, 345--354. Google ScholarGoogle ScholarCross RefCross Ref
  35. Wang, R., Tran, J., and Luebke, D. 2006. All-frequency relighting of glossy objects. ACM Transactions on Graphics 25, 2, 293--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Transactions on Graphics 27, 3, 41:1--41:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Computer Graphics (Proceedings of ACM SIGGRAPH 92), ACM, vol. 26, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Xu, K., Jia, Y.-T., Fu, H., Hu, S., and Tai, C.-L. 2008. Spherical piecewise constant basis functions for all-frequency precomputed radiance transfer. IEEE Transactions on Visualization and Computer Graphics 14, 2, 454--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhou, K., Hu, Y., Lin, S., Guo, B., and Shum, H.-Y. 2005. Precomputed shadow fields for dynamic scenes. ACM Transactions on Graphics 24, 3, 1196--1201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. 1997. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software 23, 4, 550--560. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. All-frequency rendering of dynamic, spatially-varying reflectance

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 28, Issue 5
        December 2009
        646 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1618452
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 December 2009
        Published in tog Volume 28, Issue 5

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader