skip to main content
research-article

Exploring collections of 3D models using fuzzy correspondences

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Large collections of 3D models from the same object class (e.g., chairs, cars, animals) are now commonly available via many public repositories, but exploring the range of shape variations across such collections remains a challenging task. In this work, we present a new exploration interface that allows users to browse collections based on similarities and differences between shapes in user-specified regions of interest (ROIs). To support this interactive system, we introduce a novel analysis method for computing similarity relationships between points on 3D shapes across a collection. We encode the inherent ambiguity in these relationships using fuzzy point correspondences and propose a robust and efficient computational framework that estimates fuzzy correspondences using only a sparse set of pairwise model alignments. We evaluate our analysis method on a range of correspondence benchmarks and report substantial improvements in both speed and accuracy over existing alternatives. In addition, we demonstrate how fuzzy correspondences enable key features in our exploration tool, such as automated view alignment, ROI-based similarity search, and faceted browsing.

Skip Supplemental Material Section

Supplemental Material

tp151_12.mp4

mp4

21 MB

References

  1. Aiger, D., Mitra, N. J., and Cohen-Or, D. 2008. 4-points congruent sets for robust surface registration. ACM TOG 27, 3, #85, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. In ACM SIGGRAPH, 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. In ACM SIGGRAPH, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE PAMI 14, 2 (Feb.), 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. PNAS 103, 5, 1168--1172.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2008. Numerical geometry of non-rigid shapes. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chui, H., and Rangarajan, A. 2003. A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89, 2-3, 114--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. 1997. The farthest point strategy for progressive image sampling. IJCV 40, 2, 99--121.Google ScholarGoogle Scholar
  9. Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM SIGGRAPH 30, 34:1--34:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM SIGGRAPH, 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Giorgi, D., Biasotti, S., and Paraboschi, L. 2007. shrec:shape retrieval contest: Watertight models track. http://watertight.ge.imati.cnr.it/.Google ScholarGoogle Scholar
  12. Giorgi, D., Frosini, P., Spagnuolo, M., and Falcidieno, B. 2010. 3D relevance feedback via multilevel relevance judgements. Vis. Comput. 26, 10, 1321--1338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Proc. SMI 33, 3, 262--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hearst, M. A. 2006. Clustering versus faceted categories for information exploration. Commun. ACM 49, 4 (Apr.), 59--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Heath, K., Gelfand, N., Ovsjanikov, M., Aanjaneya, M., and Guibas, L. J. 2010. Image webs: Computing and exploiting connectivity in image collections. In IEEE CVPR.Google ScholarGoogle Scholar
  16. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. In ACM SIGGRAPH Asia, 125:1--125:12. Google ScholarGoogle Scholar
  17. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. In ACM SIGGRAPH, 102:1--102:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. SGP, 156--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. In ACM SIGGRAPH, 79:1--79:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3D models. In ACM SIGGRAPH, 861--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for non-rigid registration of depth scans. In Proc. SGP, 1421--1430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lipman, Y., and Funkhouser, T. 2009. Mobius voting for surface correspondence. In ACM SIGGRAPH, 72:1--72:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lipman, Y., Chen, X., Daubechies, I., and Funkhouser, T. 2010. symmetry factored embedding and distance. in ACM SIGGRAPH, 103:1--103:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mitra, N. J., Gelfand, N., Pottmann, H., and Guibas, L. 2004. Registration of point cloud data from a geometric optimization perspective. In SGP, 22--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Muja, M., and Lowe, D. G. 2009. Fast approximate nearest neighbors with automatic algorithm configuration. In Proc. VIS-SAPP, 331--340.Google ScholarGoogle Scholar
  26. Nadler, B., Lafon, S., Coifman, R. R., and Kevrekidis, I. G. 2006. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis 21, 1, 113--127.Google ScholarGoogle ScholarCross RefCross Ref
  27. Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., and Guibas, L. 2011. An optimization approach to improving collections of shape maps. SGP 30, 5, 1481--1491.Google ScholarGoogle Scholar
  28. Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. J. 2010. One point isometric matching with the heat kernel. SGP 29, 5, 1555--1564.Google ScholarGoogle Scholar
  29. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. ACM SIGGRAPH 30, 4, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. inter-surface mapping. ACM SIGGRAPH 23, 3, 870--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The princeton shape benchmark. In Proc. SMI, 167--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM SIGGRAPH Asia 30, 6, 126:1--126:9. Google ScholarGoogle Scholar
  33. Sun, J., Chen, X., and Funkhouser, T. A. 2010. Fuzzy geodesics and consistent sparse correspondences for: eformable shapes. CGF 29, 5, 1535--1544.Google ScholarGoogle ScholarCross RefCross Ref
  34. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2011. A survey on shape correspondence. CGF 30, 6, 1681--1707.Google ScholarGoogle ScholarCross RefCross Ref
  35. Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3D shape galleries. ACM Trans. on Graph (Proc. of SIGGRAPH) 31, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 4
    July 2012
    935 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2185520
    Issue’s Table of Contents

    Copyright © 2012 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 July 2012
    Published in tog Volume 31, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader