skip to main content
research-article

Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

It is a long-standing problem in unbiased Monte Carlo methods for rendering that certain difficult types of light transport paths, particularly those involving viewing and illumination along paths containing specular or glossy surfaces, cause unusably slow convergence. In this paper we introduce Manifold Exploration, a new way of handling specular paths in rendering. It is based on the idea that sets of paths contributing to the image naturally form manifolds in path space, which can be explored locally by a simple equation-solving iteration. This paper shows how to formulate and solve the required equations using only geometric information that is already generally available in ray tracing systems, and how to use this method in in two different Markov Chain Monte Carlo frameworks to accurately compute illumination from general families of paths. The resulting rendering algorithms handle specular, near-specular, glossy, and diffuse surface interactions as well as isotropic or highly anisotropic volume scattering interactions, all using the same fundamental algorithm. An implementation is demonstrated on a range of challenging scenes and evaluated against previous methods.

Skip Supplemental Material Section

Supplemental Material

tp148_12.mp4

mp4

12.5 MB

References

  1. Chen, M., and Arvo, J. 2000. Perturbation methods for interactive specular reflections. IEEE Trans. Vis. and Comp. Graph. 6, 3 (July/Sept.), 253--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chen, M., and Arvo, J. 2000. Theory and application of specular path perturbation. ACM Trans. Graph. 19, 4 (Oct.), 246--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, J., Wang, B., and Yong, J.-H. 2011. Improved stochastic progressive photon mapping with metropolis sampling. Computer Graphics Forum 30, 4, 1205--1213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cline, D., Talbot, J., and Egbert, P. 2005. Energy redistribution path tracing. ACM Trans. Graph. 24, 3 (Aug.), 1186--1195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. In Computer Graphics (Proceedings of SIGGRAPH 84), 137--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. 1984. Modeling the interaction of light between diffuse surfaces. In Computer Graphics (Proceedings of SIGGRAPH 84), 213--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. 28, 5 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hachisuka, T., and Jensen, H. W. 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph. 30, 5 (Oct.), 114:1--114:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hastings, W. K. 1970. Monte carlo sampling methods using markov chains and their applications. Biometrika 57, 1, 97--109.Google ScholarGoogle ScholarCross RefCross Ref
  10. Heckbert, P. S. 1990. Adaptive radiosity textures for bidirectional ray tracing. In Computer Graphics (Proceedings of SIGGRAPH 90), 145--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Igehy, H. 1999. Tracing ray differentials. In Computer Graphics (Proceedings of SIGGRAPH 99), 179--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jakob, W., 2010. Mitsuba renderer. http://www.mitsubarenderer.org.Google ScholarGoogle Scholar
  13. Jarosz, W., Zwicker, M., and Jensen, H. W. 2008. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum 27, 2 (Apr.), 557--566.Google ScholarGoogle ScholarCross RefCross Ref
  14. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Computer Graphics (Proceedings of SIGGRAPH 98), 311--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jensen, H. W. 1996. Global illumination using photon maps. In Eurographics Rendering Workshop 1996, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. 2002. A simple and robust mutation strategy for the metropolis light transport algorithm. Computer Graphics Forum 21, 3, 531--540.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kitaoka, S., Kitamura, Y., and Kishino, F. 2009. Replica exchange light transport. Computer Graphics Forum 28, 8 (Dec.), 2330--2342.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Proceedings of Compugraphics 93.Google ScholarGoogle Scholar
  20. Lai, Y.-C., Fan, S. H., Chenney, S., and Dyer, C. 2007. Photorealistic image rendering with population monte carlo energy redistribution. In Rendering Techniques 2007: 18th Eurographics Workshop on Rendering, 287--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liu, J. S. 2001. Monte Carlo strategies in scientific computing. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 6.Google ScholarGoogle ScholarCross RefCross Ref
  23. Mitchell, D. P., and Hanrahan, P. 1992. Illumination from curved reflectors. In Computer Graphics (Proceedings of SIGGRAPH 92), 283--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Rendering Techniques 2000: 11th Eurographics Workshop on Rendering, 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Premoze, S., Ashikhmin, M., and Shirley, P. 2003. Path integration for light transport in volumes. In Eurographics Symposium on Rendering: 14th Eurographics Workshop on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Segovia, B., Iehl, J., and Péroche, B. 2007. Metropolis instant radiosity. Computer Graphics Forum 26, 3 (Sept.), 425--434.Google ScholarGoogle ScholarCross RefCross Ref
  27. Shirley, P. S., Wade, B., Hubbard, P., Zareski, D., Walter, B., and Greenberg, D. P. 1995. Global illumination via density estimation. In Eurographics Rendering Workshop 1995, 219--231.Google ScholarGoogle Scholar
  28. Sillion, F. X., and Puech, C. 1989. A general two-pass method integrating specular and diffuse reflection. In Computer Graphics (Proceedings of SIGGRAPH 89), 335--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Spivak, M. 1965. Calculus on Manifolds. Addison-Wesley.Google ScholarGoogle Scholar
  30. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Fifth Eurographics Workshop on Rendering.Google ScholarGoogle Scholar
  31. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Computer Graphics (Proceedings of SIGGRAPH 97), 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Veach, E. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Walter, B., Hubbard, P. M., Shirley, P. S., and Greenberg, D. F. 1997. Global illumination using local linear density estimation. ACM Trans. Graph. 16, 3 (July), 217--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. 2007. Microfacet models for refraction through rough surfaces. In Rendering Techniques 2007: 18th Eurographics Workshop on Rendering, 195--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Walter, B., Zhao, S., Holzschuch, N., and Bala, K. 2009. Single scattering in refractive media with triangle mesh boundaries. ACM Trans. Graph. 28, 3 (July), 92:1--92:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Whitted, T. 1980. An improved illumination model for shaded display. Communications of the ACM 23, 6 (June), 343--349. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader