skip to main content
10.1145/2207676.2208659acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Multidimensional pareto optimization of touchscreen keyboards for speed, familiarity and improved spell checking

Published:05 May 2012Publication History

ABSTRACT

This paper presents a new optimization technique for keyboard layouts based on Pareto front optimization. We used this multifactorial technique to create two new touchscreen phone keyboard layouts based on three design metrics: minimizing finger travel distance in order to maximize text entry speed, a new metric to maximize the quality of spell correction by reducing tap ambiguity, and maximizing familiarity through a similarity function with the standard Qwerty layout. The paper describes the optimization process and resulting layouts for a standard trapezoid shaped keyboard and a more rectangular layout. Fitts' law modelling shows a predicted 11% improvement in entry speed without taking into account the significantly improved error correction potential and the subsequent effect on speed. In initial user tests typing speed dropped from approx. 21 wpm with Qwerty to 13 wpm (64%) on first use of our layout but recovered to 18 wpm (85%) within four short trial sessions, and was still improving. NASA TLX forms showed no significant difference on load between Qwerty and our new layout use in the fourth session. Together we believe this shows the new layouts are faster and can be quickly adopted by users.

References

  1. Allen, J. M., McFarlin, L. A. and Green, T. An InDepth Look into the Text Entry User Experience on the iPhone. In Proc. 52nd HFES (2008), 508--512.Google ScholarGoogle Scholar
  2. Bi, X., Smith, B. A. and Zhai, S. Quasi-qwerty soft keyboard optimization. In Proc. CHI 2010, ACM Press (2010), 283--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bi, X., Smith, B. A. and Zhai, S. Multilingual Touchscreen Keyboard Design and Optimization. Human-Computer Interaction (to appear 2011).Google ScholarGoogle Scholar
  4. Clawson, J., Lyons, K., Rudnick, A., Iannucci, R. A. J. and Starner, T. Automatic whiteout++: correcting miniQWERTY typing errors using keypress timing. In Proc. CHI 2008, ACM Press (2008), 573--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. David, P. A. Clio and the Economics of QWERTY. American Economic Review, 75, 2 (1985), 332--337.Google ScholarGoogle Scholar
  6. Deb, K. Multi-Objective Optimization using Evolutionary Algorithms. Wiley, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dunlop, M. D. and Crossan, A. Predictive text entry methods for mobile phones. Personal Technologies, 4, 2 (2000).Google ScholarGoogle ScholarCross RefCross Ref
  8. Dunlop, M. D., Glen, A., Motaparti, S. and Patel, S. AdapTex: contextually adaptive text entry for mobiles. In Proc. MobileHCI '06, ACM Press (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fitts, P. M. The information capacity of the human motor system in controlling the amplitude of movement. J. Experimental Psychology, 47, 6 (1954), 381--391.Google ScholarGoogle ScholarCross RefCross Ref
  10. Gong, J. and Tarasewich, P. Alphabetically constrained keypad designs for text entry on mobile devices. In Proc. CHI '05, ACM Press (2005), 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Grover, D. L., King, M. T. and Kushler, C. A. Reduced keyboard disambiguating computer Tegic Communications, Inc., Patent US5818437 (1998).Google ScholarGoogle Scholar
  12. Hasselgren, J., Montnemery, E., Nugues, P. and Svensson, M. HMS: A Predictive Text Entry Method Using Bigrams. In Proc. Workshop on Language Modeling for Text Entry Methods at EACL (2003), 4349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hoggan, E., Brewster, S. A. and Johnston, J. Investigating the effectiveness of tactile feedback for mobile touchscreens. In Proc. CHI '08, ACM Press (2008), 1573--1582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hoos, H. H. and Stutzle, T. Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jones, M. P. and Martin, J. H. Contextual spelling correction using latent semantic analysis. In Proc. ANLP 1997, Association for Computational Linguistics (1997), 166--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kristensson, P.-O. and Zhai, S. Relaxing stylus typing precision by geometric pattern matching. In Proc. IUI 2005, ACM Press (2005), 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kristensson, P. Five Challenges for Intelligent Text Entry Methods. AI Magazine, 30, 4 (2009), 85--94.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kwon, S., Lee, D. and Chung, M. K. Effect of key size and activation area on the performance of a regional error correction method in a touch-screen QWERTY keyboard. International Journal of Industrial Ergonomics, 39, 5 (2009), 888--893.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lee, S. and Zhai, S. The performance of touch screen soft buttons. In Proc. CHI 2009, ACM Press (2009), 309--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lewis, J. R., Kennedy, P. J. and LaLomia, M. J. Development of a Digram-Based Typing Key Layout for Single-Finger/Stylus Input. In Proc. HFES (1999).Google ScholarGoogle ScholarCross RefCross Ref
  21. MacKenzie, I. S. and Soukoreff, R. W. A model of two-thumb text entry. In Proc. Graphics Interface 2002, Canadian Information Processing Society (2002).Google ScholarGoogle Scholar
  22. MacKenzie, I. S. and Soukoreff, R. W. Text entry for mobile computing: Models and methods, theory and practice. Human-Computer Interaction, 17 (2002), 147198.Google ScholarGoogle ScholarCross RefCross Ref
  23. MacKenzie, I. S. and Soukoreff, R. W. Phrase sets for evaluating text entry techniques. In Proc. CHI 2003, ACM Press (2003), 754--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. MacKenzie, I. S. and Zhang, S. X. The design and evaluation of a high-performance soft keyboard. In Proc. CHI'99, ACM Press (1999), 25--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. MacKenzie, I. S., Zhang, S. X. and Soukoreff, R. W. Text entry using soft keyboards. Behaviour & Information Technology, 18, 4 (1999), 235--244.Google ScholarGoogle ScholarCross RefCross Ref
  26. Parhi, P., Karlson, A. K. and Bederson, B. B. Target size study for one-handed thumb use on small touchscreen devices. In Proc. MobileHCI 2006, ACM Press (2006), 203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Silfverberg, M., MacKenzie, I. S. and Korhonen, P. Predicting text entry speed on mobile phones. In Proc. CHI'00, ACM Press (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Soukoreff, R. W. and MacKenzie, I. S. Theoretical upper and lower bounds on typing speed using a stylus and soft keyboard. Behaviour & Information Technology, 14 (1995), 370--379.Google ScholarGoogle ScholarCross RefCross Ref
  29. Steuer, R. E. Multiple Criteria Optimization: Theory, Computations, and Application. John Wiley & Sons, New York, 1986.Google ScholarGoogle Scholar
  30. Zhai, S., Hunter, M. and Smith, B. Performance Optimization of Virtual Keyboards. Human-Computer Interaction, 17, 2 (2002), 229--269.Google ScholarGoogle ScholarCross RefCross Ref
  31. Zhai, S., Hunter, M. and Smith, B. A. The metropolis keyboard - an exploration of quantitative techniques for virtual keyboard design. In Proc. UIST'00, ACM Press (2000), 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhai, S., Sue, A. and Accot, J. Movement model, hits distribution and learning in virtual keyboarding. In Proc. CHI'02, ACM Press (2002), 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multidimensional pareto optimization of touchscreen keyboards for speed, familiarity and improved spell checking

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      May 2012
      3276 pages
      ISBN:9781450310154
      DOI:10.1145/2207676

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 May 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader