skip to main content
research-article

Bi-scale appearance fabrication

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Surfaces in the real world exhibit complex appearance due to spatial variations in both their reflectance and local shading frames (i.e. the local coordinate system defined by the normal and tangent direction). For opaque surfaces, existing fabrication solutions can reproduce well only the spatial variations of isotropic reflectance. In this paper, we present a system for fabricating surfaces with desired spatially-varying reflectance, including anisotropic ones, and local shading frames. We approximate each input reflectance, rotated by its local frame, as a small patch of oriented facets coated with isotropic glossy inks. By assigning different ink combinations to facets with different orientations, this bi-scale material can reproduce a wider variety of reflectance than the printer gamut, including anisotropic materials. By orienting the facets appropriately, we control the local shading frame. We propose an algorithm to automatically determine the optimal facets orientations and ink combinations that best approximate a given input appearance, while obeying manufacturing constraints on both geometry and ink gamut. We fabricate the resulting surface with commercially available hardware, a 3D printer to fabricate the facets and a flatbed UV printer to coat them with inks. We validate our method by fabricating a variety of isotropic and anisotropic materials with rich variations in normals and tangents.

Skip Supplemental Material Section

Supplemental Material

tp114.mp4

mp4

16.2 MB

References

  1. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Trans. Graph. 29, 4 (July), 60:1--60:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ashikmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based brdf generator. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '00, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bermano, A., Baran, I., Alexa, M., and Matusk, W. 2012. Shadowpix: Multiple images from self shadowing. Comp. Graph. Forum 31, 2 (May), 593--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29 (July), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dong, Y., Tong, X., Pellacini, F., and Guo, B. 2011. Appgen: interactive material modeling from a single image. ACM, New York, NY, USA, vol. 30, 146:1--146:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dong, Y., Tong, X., Pellacini, F., and Guo, B. 2012. Printing spatially-varying reflectance for reproducing hdr images. ACM Trans. Graph. 31, 4 (July), 40:1--40:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dorsey, J., Rushmeier, H., and Sillion, F. 2008. Digital Modeling of Material Appearance. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3 (July), 749--758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gondek, J. S., Meyer, G. W., and Newman, J. G. 1994. Wavelength dependent reflectance functions. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH '94, 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29 (July), 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Heidrich, W., Daubert, K., Kautz, J., and Seidel, H.-P. 2000. Illuminating micro geometry based on precomputed visibility. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '00, 455--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Trans. Graph. 27, 5 (Dec.), 133:1--133:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Holroyd, M., Baran, I., Lawrence, J., and Matusik, W. 2011. Computing and fabricating multilayer models. ACM Trans. Graph. 30 (Dec.), 187:1--187:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hullin, M. B., Lensch, Hendrik P. A. and Raskar, R., Seidel, H.-P., and Ihrke, I. 2011. Dynamic display of BRDFs. In Computer Graphics Forum (Proc. EUROGRAPHICS), Blackwell, Llandudno, UK, O. Deussen and M. Chen, Eds., Eurographics, 475--483.Google ScholarGoogle Scholar
  15. Iwasaki, K., Dobashi, Y., and Nishita, T. 2012. Interactive bi-scale editing of highly glossy materials. ACM Trans. Graph. 31, 6 (Nov.), 144:1--144:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3 (July), 735--745. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and James, D. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3 (June), 20:1--20:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28 (December), 128:1--128:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. Eurographics Symposium on Rendering 2005, 117--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nocedal, J. 1980. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation 35, 151, 773--782.Google ScholarGoogle Scholar
  21. Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., and Jarosz, W. 2012. The magic lens: refractive steganography. ACM Trans. Graph. 31, 6 (Nov.), 186:1--186:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pereira, T., and Rusinkiewicz, S. 2012. Gamut mapping spatially varying reflectance with an improved BRDF similarity metric. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 31, 4 (June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Regg, C., Rusinkiewicz, S., Matusik, W., and Gross, M. 2010. Computational highlight holography. ACM Trans. Graph. 29, 6 (Dec.), 170:1--170:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Toler-Franklin, C., Finkelstein, A., and Rusinkiewicz, S. 2007. Illustration of complex real-world objects using images with normals. In International Symposium on Non-Photorealistic Animation and Rendering (NPAR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3 (Aug.), 41:1--41:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. SIGGRAPH Comput. Graph. 26, 2 (July), 255--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3 (July), 32:1--32:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wu, H., Dorsey, J., and Rushmeier, H. 2009. Characteristic point maps. In Proceedings of the Twentieth Eurographics conference on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, EGSR'09, 1227--1236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wu, H., Dorsey, J., and Rushmeier, H. 2011. Physically-based interactive bi-scale material design. ACM Trans. Graph. 30 (Dec.), 145:1--145:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro ct imaging. ACM Trans. Graph. 30, 4 (July), 44:1--44:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2012. Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31, 4 (July), 75:1--75:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Bi-scale appearance fabrication

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader