skip to main content
10.1145/2501988.2502018acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

UltraHaptics: multi-point mid-air haptic feedback for touch surfaces

Published:08 October 2013Publication History

ABSTRACT

We introduce UltraHaptics, a system designed to provide multi-point haptic feedback above an interactive surface. UltraHaptics employs focused ultrasound to project discrete points of haptic feedback through the display and directly on to users' unadorned hands. We investigate the desirable properties of an acoustically transparent display and demonstrate that the system is capable of creating multiple localised points of feedback in mid-air. Through psychophysical experiments we show that feedback points with different tactile properties can be identified at smaller separations. We also show that users are able to distinguish between different vibration frequencies of non-contact points with training. Finally, we explore a number of exciting new interaction possibilities that UltraHaptics provides.

Skip Supplemental Material Section

Supplemental Material

uist250.mp4

mp4

80.7 MB

References

  1. Alexander, J., Marshall, M. T., and Subramanian, S. Adding haptic feedback to mobile tv. In Ext. Abstracts CHI 2011, ACM Press (2011), 1975--1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bau, O., Poupyrev, I., Israr, A., and Harrison, C. Teslatouch: electrovibration for touch surfaces. In Proc. UIST 2010, ACM Press (2010), 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Berkelman, P. J., Butler, Z. J., and Hollis, R. L. Design of a hemispherical magnetic levitation haptic interface device. In Proc. ASME HAPTICS 1996 (1996), 17--22.Google ScholarGoogle Scholar
  4. Biet, M., Giraud, F., and Lemaire-Semail, B. Implementation of tactile feedback by modifying the perceived friction. The European Physical Journal Applied Physics 43 (2008), 123--135.Google ScholarGoogle ScholarCross RefCross Ref
  5. Dalecki, D., Child, S., Raeman, C., and Carstensen, E. Tactile perception of ultrasound. J. Acoust. Soc. Am. 97 (1995), 3165--3170.Google ScholarGoogle ScholarCross RefCross Ref
  6. Ebbini, E. S., and Cain, C. a. Multiple-focus ultrasound phased-array pattern synthesis: optimal driving-signal distributions for hyperthermia. IEEE T. Ultrason. Ferr. 36, 5 (1989), 540--548.Google ScholarGoogle ScholarCross RefCross Ref
  7. Filonenko, E. A., Gavrilov, L. R., Khokhlova, V. A., and Hand, J. W. Heating of biological tissues by two-dimensional phased arrays with random and regular element distributions. Acoust. Phys. 50, 2 (2004), 222--231.Google ScholarGoogle ScholarCross RefCross Ref
  8. Fukuhara, S., Kageyama, S., Tai, Y., and Yoshida, K. An acoustically transparent screen. J. Audio Eng. Soc 42, 12 (1994), 1020--1023.Google ScholarGoogle Scholar
  9. Gavrilov, L. Use of focused ultrasound for stimulation of nerve structures. Ultrasonics 22, 3 (1984), 132 -- 138.Google ScholarGoogle ScholarCross RefCross Ref
  10. Gavrilov, L. The possibility of generating focal regions of complex configurations in application to the problems of stimulation of human receptor structures by focused ultrasound. Acoust. Phys. 54 (2008), 269--278.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gavrilov, L., and Tsirulnikov, E. Mechanisms of Stimulation Effects of Focused Ultrasound on Neural Structures: Role of Nonlinear Effects. Nonlinear Acoust. at the Beginning of the 21st Cent. (2002), 445--448.Google ScholarGoogle Scholar
  12. Gavrilov, L., and Tsirulnikov, E. Focused ultrasound as a tool to input sensory information to humans (review). Acoust. Phys. 58 (2012), 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  13. Gavrilov, L. R., Gersuni, G. V., Ilyinski, O. B., Tsirulnikov, E. M., and Shchekanov, E. E. A Study of Reception with the Use of Focused Ultrasound. I. Effects on the Skin and Deep Receptor Structures in Man. Brain Research 135, 2 (1977), 265--277.Google ScholarGoogle Scholar
  14. Gescheider, G. A., Bolanowski, S. J., Pope, J. V., and Verrillo, R. T. A four-channel analysis of the tactile sensitivity of the fingertip: frequency selectivity, spatial summation, and temporal summation. Somatosensory & Motor Research 19, 2 (2002), 114--124.Google ScholarGoogle ScholarCross RefCross Ref
  15. Harrison, C., and Hudson, S. E. Providing dynamically changeable physical buttons on a visual display. In Proc. CHI 2009, ACM Press (2009), 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hoshi, T. Development of aerial-input and aerial-tactile-feedback system. In World Haptics Conference, 2011 IEEE (2011), 569--573.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hoshi, T., Takahashi, M., Iwamoto, T., and Shinoda, H. Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Transactions on Haptics 3, 3 (2010), 155 --165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Iwamoto, T., Tatezono, M., and Shinoda, H. Non-contact method for producing tactile sensation using airborne ultrasound. In Proc. EuroHaptics 2008, Springer-Verlag (2008), 504--513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. Project feelex: adding haptic surface to graphics. In Proc. SIGGRAPH 2001, ACM Press (2001), 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jansen, Y., Karrer, T., and Borchers, J. Mudpad: localized tactile feedback on touch surfaces. In Adj. Proc. UIST 2010, ACM Press (2010), 385--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Johnson, K. O. The roles and functions of cutaneous mechanoreceptors. Current Opinion in Neurobiology 11, 4 (2001), 455--461.Google ScholarGoogle ScholarCross RefCross Ref
  22. Johnson, K. O., and Phillips, J. R. Tactile spatial resolution. i. two-point discrimination, gap detection, grating resolution, and letter recognition. Journal of Neurophysiology 46, 6 (1981), 1177--1192.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lee, J. C., Dietz, P. H., Leigh, D., Yerazunis, W. S., and Hudson, S. E. Haptic pen: a tactile feedback stylus for touch screens. In Proc. UIST 2004, ACM Press (2004), 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., and Sheng, P. Locally Resonant Sonic Materials. Science 289, 5485 (2000), 1734--1736.Google ScholarGoogle Scholar
  25. Marshall, M., Carter, T., Alexander, J., and Subramanian, S. Ultra-tangibles: creating movable tangible objects on interactive tables. In Proc. CHI 2012, ACM Press (2012), 2185--2188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Massie, T. H., and Salisbury, K. J. Phantom haptic interface: a device for probing virtual objects. vol. 55-1 of Proc. ASME 1994, ASME (1994), 295--299.Google ScholarGoogle Scholar
  27. Obrist, M., Seah, S. A., and Subramanian, S. Talking about tactile experiences. In Proc. CHI 2013, ACM Press (2013), 1659--1668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pendry, J. Negative refraction makes a perfect lens. Physical Review Letters 85, 18 (Oct. 2000), 3966--3969.Google ScholarGoogle ScholarCross RefCross Ref
  29. Perez, C., Holzmann, C., and Jaeschke, H. Two-point vibrotactile discrimination related to parameters of pulse burst stimulus. Medical and Biological Engineering and Computing 38, 1 (2000), 74--79.Google ScholarGoogle ScholarCross RefCross Ref
  30. Rekimoto, J. Senseablerays: opto-haptic substitution for touch-enhanced interactive spaces. In Ext. Absstracts CHI 2009, ACM Press (2009), 2519--2528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wakatsuki, T., and Fukunishi, T. Acoustical characteristics of a sound screen for hdtv. In Audio Engineering Society Convention 95 (10 1993).Google ScholarGoogle Scholar
  32. Weiss, M., Wacharamanotham, C., Voelker, S., and Borchers, J. Fingerflux: near-surface haptic feedback on tabletops. In Proc. UIST 2011, ACM Press (2011), 615--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wusheng, C., Tianmiao, W., and Lei, H. Design of data glove and arm type haptic interface. In Proc. HAPTICS 2003 (2003), 422 -- 427. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. UltraHaptics: multi-point mid-air haptic feedback for touch surfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '13: Proceedings of the 26th annual ACM symposium on User interface software and technology
      October 2013
      558 pages
      ISBN:9781450322683
      DOI:10.1145/2501988

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 October 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '13 Paper Acceptance Rate62of317submissions,20%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader