skip to main content
research-article

Fine-grained semi-supervised labeling of large shape collections

Published:01 November 2013Publication History
Skip Abstract Section

Abstract

In this paper we consider the problem of classifying shapes within a given category (e.g., chairs) into finer-grained classes (e.g., chairs with arms, rocking chairs, swivel chairs). We introduce a multi-label (i.e., shapes can belong to multiple classes) semi-supervised approach that takes as input a large shape collection of a given category with associated sparse and noisy labels, and outputs cleaned and complete labels for each shape. The key idea of the proposed approach is to jointly learn a distance metric for each class which captures the underlying geometric similarity within that class, e.g., the distance metric for swivel chairs evaluates the global geometric resemblance of chair bases. We show how to achieve this objective by first geometrically aligning the input shapes, and then learning the class-specific distance metrics by exploiting the feature consistency provided by this alignment. The learning objectives consider both labeled data and the mutual relations between the distance metrics. Given the learned metrics, we apply a graph-based semi-supervised classification technique to generate the final classification results.

In order to evaluate the performance of our approach, we have created a benchmark data set where each shape is provided with a set of ground truth labels generated by Amazon's Mechanical Turk users. The benchmark contains a rich variety of shapes in a number of categories. Experimental results show that despite this variety, given very sparse and noisy initial labels, the new method yields results that are superior to state-of-the-art semi-supervised learning techniques.

Skip Supplemental Material Section

Supplemental Material

References

  1. Amit, Y., Fink, M., Srebro, N., and Ullman, S. 2007. Uncovering shared structures in multiclass classification. ICML '07, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baghshah, M. S., and Shouraki, S. B. 2009. Semi-supervised metric learning using pairwise constraints. IJCAI'09, 1217--1222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (Jan.), 1--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Candès, E. J., and Recht, B. 2009. Exact matrix completion via convex optimization. Found. Comput. Math. 9, 6 (Dec.), 717--772. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3d model retrieval. Comput. Graph. Forum 22, 3, 223--232.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chen, G., Song, Y., Wang, F., and Zhang, C. 2008. Semi-supervised multi-label learning by solving a sylvester equation. In SDM, SIAM, 410--419.Google ScholarGoogle Scholar
  7. Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Warner, F., and Zucker, S. 2005. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. In PNAS, 7426--7431.Google ScholarGoogle Scholar
  8. Crandall, D., Owens, A., Snavely, N., and Huttenlocher, D. 2011. Discrete-continuous optimization for large-scale structure from motion. CVPR '11, 3001--3008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. da Fontoura Costa, L., and Cesar Jr., R. M. 2009. Shape Classification and Analysis: Theory and Practice, 2nd ed. CRC Press, Inc., Boca Raton, FL, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Deng, J., Krause, J., and Fei-Fei, L. 2013. Fine-grained crowd-sourcing for fine-grained recognition. In CVPR'13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fergus, R., Weiss, Y., and Torralba, A. 2009. Semi-supervised learning in gigantic image collections. In NIPS, 522--530.Google ScholarGoogle Scholar
  12. Hoi, S. C., Liu, W., and Chang, S.-F. 2010. Semi-supervised distance metric learning for collaborative image retrieval and clustering. ACM Trans. Multimedia Comput. Commun. Appl. 6, 3 (Aug.), 18:1--18:26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Holland, P. W., and Welsch, R. E. 1977. Robust regression using iteratively reweighted least-squares. Communications in Statistics: Theory and Methods A6, 813--827.Google ScholarGoogle ScholarCross RefCross Ref
  14. Huang, Q.-X., Zhang, G.-X., Gao, L., Hu, S.-M., Butscher, A., and Guibas, L. 2012. An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. 31, 6 (Nov.), 167:1--167:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huber, D. 2002. Automatic Three-dimensional Modeling from Reality. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Johnson, A. E., and Hebert, M. 1999. Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 5 (May), 433--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31, 4 (July), 55:1--55:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3d shape descriptors. SGP '03, 156--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, V. G., Li, W., Mitra, N. J., DiVerdi, S., and Funkhouser, T. 2012. Exploring collections of 3d models using fuzzy correspondences. ACM Trans. Graph. 31, 4 (July), 54:1--54:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., and Funkhouser, T. 2013. Learning part-based templates from large collections of 3d shapes. ACM Trans. Graph. 32, 4 (July), 70:1--70:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Leordeanu, M., and Hebert, M. 2006. Efficient map approximation for dense energy functions. ICML '06, 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for non-rigid registration of depth scans. In SGP, 1421--1430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, W., Wang, J., and Chang, S.-F. 2012. Robust and scalable graph-based semisupervised learning. Proceedings of the IEEE 100, 9, 2624--2638.Google ScholarGoogle ScholarCross RefCross Ref
  24. Loeff, N., Farhadi, A., Endres, I., and Forsyth, D. 2009. Unlabeled data improves word prediction. In ICCV'09, 956--962.Google ScholarGoogle Scholar
  25. Miller, G. A. 1995. Wordnet: A lexical database for english. Communications of the ACM 38, 39--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Trans. Graph. 21 (October), 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH '86, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shi, J., and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22 (August), 888--905. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tsoumakas, G., and Katakis, I. 2007. Multi-label classification: An overview. Int J Data Ware. and Mining 2007, 1--13.Google ScholarGoogle Scholar
  30. Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Active co-analysis of a set of shapes. ACM Trans. Graph. 31, 6, 165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z.-Q. 2010. Style-content separation by anisotropic part scales. SIGGRAPH ASIA '10, 184:1--184:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yang, L., and Jin, R. 2006. Distance metric learning: A comprehensive survey.Google ScholarGoogle Scholar
  33. Yao, B., Khosla, A., and Fei-Fei, L. 2011. Combining randomization and discrimination for fine-grained image categorization. In CVPR '11, 1577--1584. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhu, X. 2006. Semi-supervised learning literature survey. Computer Sciences TR 1530, University of Wisconsin Madison.Google ScholarGoogle Scholar

Index Terms

  1. Fine-grained semi-supervised labeling of large shape collections

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 6
        November 2013
        671 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2508363
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 November 2013
        Published in tog Volume 32, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader