skip to main content
research-article

Sparse localized deformation components

Published:01 November 2013Publication History
Skip Abstract Section

Abstract

We propose a method that extracts sparse and spatially localized deformation modes from an animated mesh sequence. To this end, we propose a new way to extend the theory of sparse matrix decompositions to 3D mesh sequence processing, and further contribute with an automatic way to ensure spatial locality of the decomposition in a new optimization framework. The extracted dimensions often have an intuitive and clear interpretable meaning. Our method optionally accepts user-constraints to guide the process of discovering the underlying latent deformation space. The capabilities of our efficient, versatile, and easy-to-implement method are extensively demonstrated on a variety of data sets and application contexts. We demonstrate its power for user friendly intuitive editing of captured mesh animations, such as faces, full body motion, cloth animations, and muscle deformations. We further show its benefit for statistical geometry processing and biomechanically meaningful animation editing. It is further shown qualitatively and quantitatively that our method outperforms other unsupervised decomposition methods and other animation parameterization approaches in the above use cases.

Skip Supplemental Material Section

Supplemental Material

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. SCAPE: shape completion and animation of people. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bach, F. R., Jenatton, R., Mairal, J., and Obozinski, G. 2012. Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graph. (Proc. SIGGRAPH) 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cao, Y., Shapiro, A., Faloutsos, P., and Pighin, F. 2007. Motion editing with independent component analysis. Visual Computer.Google ScholarGoogle Scholar
  6. Cashman, T. J., and Hormann, K. 2012. A continuous, editable representation for deforming mesh sequences with separate signals for time, pose and shape. Comp. Graph. Forum (Proc. EG) 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph., to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. de Aguiar, E., Theobalt, C., Thrun, S., and Seidel, H.-P. 2008. Automatic conversion of mesh animations into skeleton-based animations. Comp. Graph. Forum (Proc. EG) 27, 2.Google ScholarGoogle ScholarCross RefCross Ref
  9. de Aguiar, E., Sigal, L., Treuille, A., and Hodgins, J. K. 2009. Stable spaces for real-time clothing. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Deng, B., Bouaziz, S., Deuss, M., Zhang, J., Schwartzburg, Y., and Pauly, M. 2013. Exploring Local Modifications for Constrained Meshes. Comp. Graph. Forum (Proc. EG) 32, 2.Google ScholarGoogle Scholar
  11. Feng, W.-W., Kim, B.-U., and Yu, Y. 2008. Real-time data driven deformation using kernel canonical correlation analysis. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fröhlich, S., and Botsch, M. 2011. Example-driven deformations based on discrete shells. Comp. Graph. Forum 30, 8.Google ScholarGoogle ScholarCross RefCross Ref
  13. Guan, P., Reiss, L., Hirshberg, D., Weiss, A., and Black, M. J. 2012. DRAPE: DRessing Any PErson. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., and Seidel, H.-P. 2009. A statistical model of human pose and body shape. Comp. Graph. Forum (Proc. EG) 2, 28.Google ScholarGoogle Scholar
  15. Hasler, N., Thormählen, T., Rosenhahn, B., and Seidel, H.-P. 2010. Learning skeletons for shape and pose. In Proc. of I3D. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Havaldar, P. 2006. Performance driven facial animation. In ACM SIGGRAPH 2006 Course 30 Notes.Google ScholarGoogle Scholar
  17. Hyvärinen, A., Karhunen, J., and Oja, E. 2001. Independent component analysis. John Wiley & Sons.Google ScholarGoogle Scholar
  18. Jenatton, R. 2011. Structured Sparsity-Inducing Norms: Statistical and Algorithmic Properties with Applications to Neuroimaging. PhD thesis, École Normale Supérieure Cachan.Google ScholarGoogle Scholar
  19. Jolliffe, I. T., Trendafilov, N. T., and Uddin, M. 2003. A modified principal component technique based on the LASSO. J. Comp. Graph. Stat. 12, 3.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kavan, L., Sloan, P.-P., and O'Sullivan, C. 2010. Fast and efficient skinning of animated meshes. Comp. Graph. Forum (Proc. EG) 29, 2.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kavan, L., Gerszewski, D., Bargteil, A., and Sloan, P.- P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kim, D., Koh, W., Narain, R., Fatahalian, K., Treuille, A., and O'Brien, J. F. 2013. Near-exhaustive precomputation of secondary cloth effects. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kircher, S., and Garland, M. 2009. Free-form motion processing. ACM Trans. Graph. 27, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kry, P. G., James, D. L., and Pai, D. K. 2000. EigenSkin: Real time large deformation character skinning in hardware. In Proc. SCA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lau, M., Chai, J., Xu, Y.-Q., and Shum, H.-Y. 2009. Face poser: Interactive modeling of 3D facial expressions using facial priors. ACM Trans. Graph. 29, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Le, B., and Deng, Z. 2012. Smooth skinning decomposition with rigid bones. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lee, D. D., and Seung, H. S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401.Google ScholarGoogle Scholar
  28. Levine, S., Wang, J. M., Haraux, A., Popovíc, Z., and Koltun, V. 2012. Continuous character control with low-dimensional embeddings. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lewis, J. P., and Anjyo, K. 2010. Direct-manipulation blendshapes. IEEE CGAA 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Li, H., Weise, T., and Pauly, M. 2010. Example-based facial rigging. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mackey, L. 2009. Deflation methods for sparse pca. In Adv. NIPS.Google ScholarGoogle Scholar
  32. Mairal, J., Bach, F., Ponce, J., and Sapiro, G. 2009. Online dictionary learning for sparse coding. In Proc. ICML. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Meyer, M., and Anderson, J. 2007. Key point subspace acceleration and soft caching. ACM Trans. Graph. (Proc. SIGGRAPH)26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Comp. Graph. Forum (Proc. EG) 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Magnor, M., and Theobalt, C. 2013. Capture and Statistical Modeling of Arm-Muscle Deformations. Comp. Graph. Forum (Proc. EG) 32, 2.Google ScholarGoogle ScholarCross RefCross Ref
  37. Olshausen, B., and Field, D. J. 1997. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Research 37, 23.Google ScholarGoogle ScholarCross RefCross Ref
  38. Osipa, J. 2003. Stop Staring: Facial modeling and animation done right, second ed. Sybex. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Pokrass, J., Bronstein, A. M., Bronstein, M. M., Sprechmann, P., and Sapiro, G. 2013. Sparse Modeling of Intrinsic Correspondences. Comp. Graph. Forum (Proc. EG) 32, 2.Google ScholarGoogle Scholar
  40. Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., and Gross, M. 2012. Efficient simulation of example-based materials. In Proc. SCA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Seo, J., Irving, G., Lewis, J. P., and Noh, J. 2011. Compression and direct manipulation of complex blendshape models. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tena, J. R., De la Torre, F., and Matthews, I. 2011. Interactive region-based linear 3D face models. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Theobalt, C., de Aguiar, E., Stoll, C., Seidel, H.-P., and Thrun, S. 2010. Image and geometry processing for 3D Cinematography. Springer, ch. Performance capture from multi-view video.Google ScholarGoogle Scholar
  46. Tournier, M., and Reveret, L. 2012. Principal Geodesic Dynamics. In Proc. SCA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Valgaerts, L., Wu, C., Bruhn, A., Seidel, H.-P., and Theobalt, C. 2012. Lightweight binocular facial performance capture under uncontrolled lighting. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Vlasic, D., Brand, M., Pfister, H., and Popovíc, J. 2005. Face transfer with multilinear models. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. Comp. Graph. Forum (Proc. EG) 26, 3.Google ScholarGoogle ScholarCross RefCross Ref
  50. Wright, S., Nowak, R., and Figueiredo, M. 2009. Sparse reconstruction by separable approximation. Signal Processing, IEEE Transactions on 57, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wu, C., Varanasi, K., Liu, Y., Seidel, H.-P., and Theobalt, C. 2011. Shading-based dynamic shape refinement from multi-view video under general illumination. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zhang, L., Snavely, N., Curless, B., and Seitz, S. 2004. Spacetime faces: High-resolution capture for modeling and animation. ACM Trans. Graph. (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zou, H., Hastie, T., and Tibshirani, R. 2006. Sparse principal component analysis. J. Comp. Graph. Stat. 15, 2.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Sparse localized deformation components

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 6
      November 2013
      671 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2508363
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 November 2013
      Published in tog Volume 32, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader