skip to main content
10.1145/2556288.2557005acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

faBrickation: fast 3D printing of functional objects by integrating construction kit building blocks

Published:26 April 2014Publication History

ABSTRACT

We present a new approach to rapid prototyping of functional objects, such as the body of a head-mounted display. The key idea is to save 3D printing time by automatically substituting sub-volumes with standard building blocks'in our case Lego bricks. When making the body for a head-mounted display, for example, getting the optical path right is paramount. Users thus mark the lens mounts as "high-resolution" to indicate that these should later be 3D printed. faBrickator then 3D prints these parts. It also generates instructions that show users how to create everything else from Lego bricks. If users iterate on the design later, faBrickator offers even greater benefit as it allows re-printing only the elements that changed. We validated our system at the example of three 3D models of functional objects. On average, our system fabricates objects 2.44 times faster than traditional 3D printing while requiring only 14 minutes of manual assembly.

Skip Supplemental Material Section

Supplemental Material

pn0297-file3.m4v

m4v

29.2 MB

References

  1. Brockmeyer, E., Poupyrev, I., Hudson, S. PAPILLON: Designing Curved Display Surfaces With Printed Optics. Proc. UIST'13, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Buxton, B. Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kaufmann, '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience. Harper Perennial Modern Classics, '08.Google ScholarGoogle Scholar
  4. Follmer, S., Carr, D., Lovell, E., Hiroshi, I. CopyCAD: remixing physical objects with copy and paste from the real world. Adjunct Proc. UIST '10, 381--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Gower, R., Heydtmann, A., Petersen, H. LEGO: Automated Model Construction. European Study Group with Industry. Study Report '98, 81'94.Google ScholarGoogle Scholar
  6. Hansen, C. J., Saksena, R., Kolesky, D. B., Vericella, J. J., Kranz, S. J., Muldowney, G. P., Christensen, K. T., Lewis, J. A. High-Throughput Printing via Microvascular Multinozzle Arrays. Advanced Materials '13, Vol. 25, Issue 1.Google ScholarGoogle Scholar
  7. Hiller, J., Lipson, H. Methods of Parallel Voxel Manipulation for 3D Digital Printing. Proc. SFF Symposium '07, 200--211.Google ScholarGoogle Scholar
  8. Gershenfeld, N. Fab: The Coming Revolution on Your Desktop--From Personal Computers to Personal Fabrication. Basic Books, '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Lego Assembler, 2010. http://mikeshouts.com/Legomade-3D-printer-that-builds-Lego-out-of-Lego/Google ScholarGoogle Scholar
  10. Mori, Y., Igarashi, T. Plushie: an interactive design system for plush toys. SIGGRAPH '07, No. 45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mueller, S., Lopes, P., Baudisch, P. Interactive Construction: Interactive Fabrication of Functional Mechanical Devices. Proc. UIST '12, 599--606. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Mueller, S., Kruck, B., Baudisch, P. LaserOrigami: Laser-Cutting 3D Objects. Proc. CHI'13, 2585--2592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Oh, Y., Johnson, G., Gross, M., Do, E.Y. The Designosaur and the Furniture Factory. Proc. DCC'06, 123--140.Google ScholarGoogle Scholar
  14. Petchkovsky, G. Mixing Digital Sculpture with Real Objects. '12.Google ScholarGoogle Scholar
  15. Petrovic, P. Solving the LEGO brick layout problem using evolutionary algorithms. Tech. rep., Norwegian University of Science and Technology '01.Google ScholarGoogle Scholar
  16. Rivers, A., Moyer, I.E., Durand, F. Position-correcting tools for 2D digital fabrication. Proc. SIGGRAPH'12 (TOG), Vol. 31, Issue 4, No. 88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Savage, V., Zhang, X., Hartmann, B. Midas: Fabricating Custom Capacitive Touch Sensors to Prototype Interactive Objects. Proc. UIST '12, 579--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Savage, V., Chang, C., Hartmann, B. Sauron: Embedded Single-Camera Sensing of Printed Physical User Interfaces. Proc. UIST'13, 447--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Saul, G., Lau, M., Mitani, J., Igarashi, T. SketchChair: an all-in-one chair design system for end users. Proc. TEI '11, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Science News, skull implant, 2013. https://www.sciencenews.org/article/plastic-implantreplaces-three-quarters-mans-skullGoogle ScholarGoogle Scholar
  21. Song, H., Guimbretière, F., Lipson, H., Hu, C. ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models. Proc. UIST '06, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Testuz, R., Schwartzburg, Y., Pauly, M. Automatic Generation of Constructable Brick Sculptures. Proc. Eurographics '13, 81--84.Google ScholarGoogle Scholar
  23. Van Zijl, L., Smal, E. Cellular automata with cell clustering. Proc. Automata '08, 425--441.Google ScholarGoogle Scholar
  24. Wibowo, A., Sakamoto, D., Mitani, J., Igarashi, T. DressUp: a 3D interface for clothing design with a physical mannequin. Proc. TEI '12, 99--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Willis, K.D.D., Brockmeyer, E., Hudson, S.E., Poupyrev, I. Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices. Proc. UIST '12, 589--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Willis, K.D.D., Lin, J., Mitani, J., Igarashi, T. Spatial sketch: bridging between movement & fabrication. Proc. TEI '10, 5--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Willis, K.D.D., Xu, C., Wu, J.K., Levin, G., Gross, M.D. Interactive fabrication: new interfaces for digital fabrication. Proc. TEI '11, 69--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Winkler, D.: Automated brick layout. BrickFest, 2005.Google ScholarGoogle Scholar
  29. Zoran, A., Buechley, L. Hybrid reAssemblage: An Exploration of Craft, Digital Fabrication and Artifact Uniqueness. Leonardo Journal '13, Vol. 46, Issue 1.Google ScholarGoogle Scholar
  30. Zoran, A., Paradiso, J.A. FreeD: a freehand digital sculpting tool. Proc. CHI'13, 2613--2616. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. faBrickation: fast 3D printing of functional objects by integrating construction kit building blocks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2014
      4206 pages
      ISBN:9781450324731
      DOI:10.1145/2556288

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 April 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '14 Paper Acceptance Rate465of2,043submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader