skip to main content
10.1145/2723372.2723731acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Minimizing Efforts in Validating Crowd Answers

Published:27 May 2015Publication History

ABSTRACT

In recent years, crowdsourcing has become essential in a wide range of Web applications. One of the biggest challenges of crowdsourcing is the quality of crowd answers as workers have wide-ranging levels of expertise and the worker community may contain faulty workers. Although various techniques for quality control have been proposed, a post-processing phase in which crowd answers are validated is still required. Validation is typically conducted by experts, whose availability is limited and who incur high costs. Therefore, we develop a probabilistic model that helps to identify the most beneficial validation questions in terms of both, improvement of result correctness and detection of faulty workers. Our approach allows us to guide the expert's work by collecting input on the most problematic cases, thereby achieving a set of high quality answers even if the expert does not validate the complete answer set. Our comprehensive evaluation using both real-world and synthetic datasets demonstrates that our techniques save up to 50% of expert efforts compared to baseline methods when striving for perfect result correctness. In absolute terms, for most cases, we achieve close to perfect correctness after expert input has been sought for only 20\% of the questions.

References

  1. https://code.google.com/p/crowdvalidator/.Google ScholarGoogle Scholar
  2. http://www.crowdflower.com/.Google ScholarGoogle Scholar
  3. http://www.mturk.com/.Google ScholarGoogle Scholar
  4. Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart. Crowd mining. In SIGMOD, pages 241--252, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching packages. In SIGMOD, pages 783--794, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis, T. Liebig, N. Piatkowski, C. Bockermann, K. Morik, V. Kalogeraki, J. Marecek, et al. Heterogeneous stream processing and crowdsourcing for urban traffic management. In EDBT, pages 712--723, 2014.Google ScholarGoogle Scholar
  7. J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating materialized views. In SIGMOD, pages 61--71, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask?: jury selection for decision making tasks on micro-blog services. In VLDB, pages 1495--1506, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc., pages 20--28, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  10. G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Zencrowd: Leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In WWW, pages 469--478, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. X. L. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava. Solomon: Seeking the truth via copying detection. In VLDB, pages 1617--1620, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. X. L. Dong, L. Berti-Equille, and D. Srivastava. Truth discovery and copying detection in a dynamic world. In VLDB, pages 562--573, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. X. L. Dong and F. Naumann. Data fusion: resolving data conflicts for integration. In VLDB, pages 1654--1655, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, pages 211--218, 1936.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Galland, S. Abiteboul, A. Marian, and P. Senellart. Corroborating information from disagreeing views. In WSDM, pages 131--140, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. F. Garcin, B. Faltings, R. Jurca, and N. Joswig. Rating aggregation in collaborative filtering systems. In RecSys, pages 349--352, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu. Corleone: Hands-off crowdsourcing for entity matching. In SIGMOD, pages 601--612, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. G. Gomes, P. Welinder, A. Krause, and P. Perona. Crowdclustering. In NIPS, pages 558--566, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Q. Hu, Q. He, H. Huang, K. Chiew, and Z. Liu. Learning from crowds under experts supervision. In PAKDD, pages 200--211. 2014.Google ScholarGoogle ScholarCross RefCross Ref
  21. Z. Huang, A. Olteanu, and K. Aberer. Credibleweb: a platform for web credibility evaluation. In CHI, pages 1887--1892, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Q. V. Hung, N. T. Tam, L. N. Tran, and K. Aberer. An evaluation of aggregation techniques in crowdsourcing. In WISE, pages 1--15, 2013.Google ScholarGoogle Scholar
  23. P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on amazon mechanical turk. HCOMP, pages 64--67, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. R. Jeffery, M. J. Franklin, and A. Y. Halevy. Pay-as-you-go user feedback for dataspace systems. In SIGMOD, pages 847--860, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. J. Jung and M. Lease. Improving quality of crowdsourced labels via probabilistic matrix factorization. In HCOMP, pages 101--106, 2012.Google ScholarGoogle Scholar
  26. H. Kajino, Y. Tsuboi, I. Sato, and H. Kashima. Learning from crowds and experts. In HCOMP, pages 107--113, 2012.Google ScholarGoogle Scholar
  27. D. R. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing systems. In NIPS, pages 1953--1961, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. G. Karypis and V. Kumar. Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0. 1995.Google ScholarGoogle Scholar
  29. G. Kazai, J. Kamps, and N. Milic-Frayling. Worker types and personality traits in crowdsourcing relevance labels. In CIKM, pages 1941--1944, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C.-W. Ko, J. Lee, and M. Queyranne. An exact algorithm for maximum entropy sampling. Operations Research, pages 684--691, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. K. Lam and J. Riedl. Shilling recommender systems for fun and profit. In WWW, pages 393--402, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. Lee, J. Caverlee, and S. Webb. The social honeypot project: protecting online communities from spammers. In WWW, pages 1139--1140, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: a crowdsourcing data analytics system. In VLDB, pages 1040--1051, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Q. V. H. Nguyen, T. T. Nguyen, Z. Miklós, K. Aberer, A. Gal, and M. Weidlich. Pay-as-you-go reconciliation in schema matching networks. In ICDE, pages 220--231, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. O'Mahony, N. Hurley, N. Kushmerick, and G. Silvestre. Collaborative recommendation: A robustness analysis. TOIT, pages 344--377, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Pasternack and D. Roth. Latent credibility analysis. In WWW, pages 1009--1020, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. J. Quinn and B. B. Bederson. Human computation: a survey and taxonomy of a growing field. In CHI, pages 1403--1412, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. V. C. Raykar and S. Yu. Ranking annotators for crowdsourced labeling tasks. In NIPS, pages 1809--1817, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Reason. Human error. Cambridge university press, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  40. J. Ross, L. Irani, M. Silberman, A. Zaldivar, and B. Tomlinson. Who are the crowdworkers?: shifting demographics in mechanical turk. In CHI, pages 2863--2872, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. Rubens, D. Kaplan, and M. Sugiyama. Active learning in recommender systems. In Recommender Systems Handbook, pages 735--767. Springer, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  42. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. C. E. Shannon. A mathematical theory of communication. SIGMOBILE, pages 3--55, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera: Large-scale classification using machine learning, rules, and crowdsourcing. In VLDB, pages 1529--1540, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. J. Surowiecki. The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies. Economies, Societies and Nations, 2004.Google ScholarGoogle Scholar
  46. TRAVAIL. Global wage report 2012--13. International Labour Organization (ILO), 2012.Google ScholarGoogle Scholar
  47. D. Wang, L. Kaplan, H. Le, and T. Abdelzaher. On truth discovery in social sensing: A maximum likelihood estimation approach. In IPSN, pages 233--244, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. P. Welinder and P. Perona. Online crowdsourcing: rating annotators and obtaining cost-effective labels. In CVPRW, pages 25--32, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  49. M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas. Guided data repair. In VLDB, pages 279--289, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: Exploiting crowds for accurate real-time image search on mobile phones. In MobiSys, pages 77--90, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. C. J. Zhang, L. Chen, H. V. Jagadish, and C. C. Cao. Reducing uncertainty of schema matching via crowdsourcing. In VLDB, pages 757--768, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. B. Zhao, B. I. Rubinstein, J. Gemmell, and J. Han. A bayesian approach to discovering truth from conflicting sources for data integration. In VLDB, pages 550--561, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Minimizing Efforts in Validating Crowd Answers

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGMOD '15: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
        May 2015
        2110 pages
        ISBN:9781450327589
        DOI:10.1145/2723372

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 May 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGMOD '15 Paper Acceptance Rate106of415submissions,26%Overall Acceptance Rate785of4,003submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader