skip to main content
10.1145/2785830.2785867acmconferencesArticle/Chapter ViewAbstractPublication PagesmobilehciConference Proceedingsconference-collections
research-article

Typing on Glasses: Adapting Text Entry to Smart Eyewear

Published:24 August 2015Publication History

ABSTRACT

Text entry for smart eyewear is generally limited to speech-based input due to constraints of the input channels. However, many smart eyewear devices are now including a side touchpad making gesture-based text entry feasible. The Swipeboard technique, recently proposed for ultra-small touch screens such as smart watches, may be particularly suitable for smart eyewear: unlike other recent text-entry techniques for small devices, it supports eyes-free input. We investigate the limitations and feasibility of implementing Swipeboard on smart eyewear, using the side touch pad for input. Our first study reveals usability and recognition problems of using the side touch pad to perform the required gestures. To address these problems, we propose SwipeZone, which replaces diagonal gestures with zone-specific swipes. In a text entry study, we show that our redesign achieved a WPM rate of 8.73, 15.2% higher than Swipeboard, with a statistically significant improvement in the last half of the study blocks.

Skip Supplemental Material Section

Supplemental Material

References

  1. Amma, C., Georgi, M., & Schultz, T. Airwriting: Hands-free mobile text input by spotting and continuous recognition of 3D-space handwriting with inertial sensors. ISWC '12. 52--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arif, A. S., Pahud, M., Hinckley, K., & Buxton, B. (2014). Experimental study of stroke shortcuts for a touchscreen keyboard with gesture-redundant keys removed. Graphics Interface. 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bajer, B., MacKenzie, I. S., & Baljko, M. (2012). Huffman Base-4 Text Entry Glove (H4 TEG). In International Symposium on Wearable Computers. 41--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blasko, G. and Feiner, S. Evaluation of an Eyes-Free Cursorless Numeric Entry System for Wearable Computers. Wearable Computers, (2006), 21--28.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J., Bacon, D., & Furnas, G. Pad+++: A zoomable graphical sketchpad for exploring alternate interface physics. JVLC. 1996, 7(1), 3--32.Google ScholarGoogle ScholarCross RefCross Ref
  6. Castellucci, S. J., & MacKenzie, I. S. Graffiti vs. unistrokes : an empirical comparison. CHI '08. 305--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, X. A., Grossman, T., & Fitzmaurice, G. Swipeboard: A Text Entry Technique for Ultra-Small Interfaces That Supports Novice to Expert Transitions. To appear UIST '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Clawson, J., Lyons, K., Starner, T., & Clarkson, E.(2005). The impacts of limited visual feedback on mobile text entry for the twiddler and mini-qwerty keyboards. International Symposium on Wearable Computers. 170--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hong, J., Heo, S., Isokoski, P., & Lee, G. (2015). SplitBoard: A Simple Split Soft Keyboard for Wristwatch-sized Touch Screens. CHI. 1233--1236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Isokoski, P., & Raisamo, R. (2000). Device independent text input: A rationale and an example. In Proceedings of the working conference on Advanced visual interfaces (pp. 76--83). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kim, S., Sohn, M., Pak, J., & Lee, W. One-key keyboard: a very small QWERTY keyboard supporting text entry for wearable computing. OzCHI '06. 305--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kristensson, P. O., & Zhai, S. SHARK 2: a large vocabulary shorthand writing system for pen-based computers. UIST '04. 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Leiva, L. A., Sahami, A., Catalá, A., Henze, N., & Schmidt, A. (2015). Text Entry on Tiny QWERTY Soft Keyboards. ACM CHI. 669--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Li, F. C. Y., Guy, R. T., Yatani, K., & Truong, K. N. The 1line keyboard: a QWERTY layout in a single line.UIST '11. 461--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Liu, Y., Liu, X., & Jia, Y. Hand-gesture based text input for wearable computers. ICVS '06. 8--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., Drew, A., & Looney, E. W. Twiddler typing: One-handed chording text entry for mobile phones. CHI '04. 671--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. MacKenzie, S. Mobile text entry using three keys. CHI'02. 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. MacKenzie, I. S., & Soukoreff, R. W. Phrase sets for evaluating text entry techniques. CHI '03 EA. 754--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. MacKenzie, I. S., Soukoreff, R. W., & Helga, J. 1 thumb, 4 buttons, 20 words per minute: Design and evaluation of H4-Writer. UIST '11. 471--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Matias, E., MacKenzie, I. S., & Buxton, W. (1994). Half-QWERTY: Typing with one hand using your two-handed skills. CHI Companion. 51--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nesbat, S. B. (2003). A system for fast, full-text entry for small electronic devices. Proceedings of ACM Multimodal interfaces. 4--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Oney, S., Harrison, C., Ogan, A., & Wiese, J. ZoomBoard: a diminutive QWERTY soft keyboard using iterative zooming for ultra-small devices. CHI '13. 2799--2802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G., & Want, R. TiltType: accelerometer-supported text entry for very small devices. UIST '02. 201--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Perlin, K. Quikwriting: continuous stylus-based text entry. UIST '98. 215--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rico, J., & Brewster, S. Usable gestures for mobile interfaces. CHI '10. 887--896. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rico, J., & Brewster, S. 2010. Gesture and voice prototyping for early evaluations of social acceptability in multimodal interfaces. International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction. Article 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rosenberg, R., & Slater, M. The chording glove: aglove-based text input device. ToSMC. 1999, 29(2), 186--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wigdor, D., & Balakrishnan, R. TiltText: using tilt for text input to mobile phones. CHI '03. 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wigdor, D., & Balakrishnan, R. A comparison of consecutive and concurrent input text entry techniques for mobile phones. CHI '04. 81--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wobbrock, J.O., Fogarty, J., Liu, S.-Y.S., Kimuro, S., and Harada, S. The angle mouse: target-agnostic dynamic gain adjustment based on angular deviation. CHI '09, 1401--1410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wobbrock, J. O., Myers, B. A., & Kembel, J. A. EdgeWrite: a stylus-based text entry method designed for high accuracy and stability of motion. UIST '06. 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhao, S., Agrawala, & Hinckley, K. Zone and polygon menus: using relative position to increase the breadth of multi-stroke marking menus. CHI'06. 1088--1086. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    MobileHCI '15: Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services
    August 2015
    611 pages
    ISBN:9781450336529
    DOI:10.1145/2785830

    Copyright © 2015 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 24 August 2015

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate202of906submissions,22%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader