skip to main content
research-article

Efficient construction and simplification of Delaunay meshes

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

Delaunay meshes (DM) are a special type of triangle mesh where the local Delaunay condition holds everywhere. We present an efficient algorithm to convert an arbitrary manifold triangle mesh M into a Delaunay mesh. We show that the constructed DM has O(Kn) vertices, where n is the number of vertices in M and K is a model-dependent constant. We also develop a novel algorithm to simplify Delaunay meshes, allowing a smooth choice of detail levels. Our methods are conceptually simple, theoretically sound and easy to implement. The DM construction algorithm also scales well due to its O(nK log K) time complexity.

Delaunay meshes have many favorable geometric and numerical properties. For example, a DM has exactly the same geometry as the input mesh, and it can be encoded by any mesh data structure. Moreover, the empty geodesic circumcircle property implies that the commonly used cotangent Laplace-Beltrami operator has non-negative weights. Therefore, the existing digital geometry processing algorithms can benefit the numerical stability of DM without changing any codes. We observe that DMs can improve the accuracy of the heat method for computing geodesic distances. Also, popular parameterization techniques, such as discrete harmonic mapping, produce more stable results on the DMs than on the input meshes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Amenta, N., and Bern, M. 1999. Surface reconstruction by Voronoi filtering. Discrete & Computational Geometry 22, 4, 481--504.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bobenko, A. I., and Springborn, B. A. 2007. A discrete laplace-beltrami operator for simplicial surfaces. Discrete & Computational Geometry 38, 4, 740--756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Burago, Y. D., and Zallgaller, V. A. 1960. Polyhedral embedding of a net. Vestnik Leningrad. Univ. 15, 66--80.Google ScholarGoogle Scholar
  4. Cheng, S.-W., Dey, T. K., and Shewchuk, J. R. 2012. Delaunay Mesh Generation. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chew, L. P. 1987. Constrained Delaunay triangulations. In Proceedings of ACM SoCG '87, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chew, L. P. 1993. Guaranteed-quality mesh generation for curved surfaces. In Proceedings of ACM SoCG '93, 274--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cignoni, P., Rocchini, C., and Scopigno, R. 1998. Metro: measuring error on simplified surfaces. Computer Graphics Forum 17, 2, 167--174.Google ScholarGoogle ScholarCross RefCross Ref
  8. Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5, 152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6, 171:1--171:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. de Goes, F., Alliez, P., Owhadi, H., and Desbrun, M. 2013. On the equilibrium of simplicial masonry structures. ACM Trans. Graph. 32, 4, 93:1--93:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. de Goes, F., Memari, P., Mullen, P., and Desbrun, M. 2014. Weighted triangulations for geometry processing. ACM Trans. Graph. 33, 3, 28:1--28:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dey, T. K., Edelsbrunner, H., Guha, S., and Nekhayev, D. V. 1999. Topology preserving edge contraction. Publ. Inst. Math.(Beograd) (N.S) 66, 80, 23--45.Google ScholarGoogle Scholar
  13. Du, Q., and Wang, D. 2005. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Scientific Computing 26, 3, 737--761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dyer, R., Zhang, H., and Möller, T. 2007. Delaunay mesh construction. In Proceedings of SGP '07, 273--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dyer, R., Zhang, H., and Möller, T. 2008. Surface sampling and the intrinsic Voronoi diagram. In Proceedings of SGP'08, 1393--1402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Edelsbrunner, H., and Shah, N. R. 1997. Triangulating topological spaces. International Journal of Computational Geometry and Applications 7, 4, 365--378.Google ScholarGoogle ScholarCross RefCross Ref
  17. Fisher, M., Springborn, B., Bobenko, A. I., and Schröder, P. 2007. An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing. Computing 82, 2-3, 199--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In ACM SIGGRAPH '97, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Glickenstein, D. 2005. Geometric triangulations and discrete Laplacians on manifolds. arXiv:math/0508188.Google ScholarGoogle Scholar
  20. Guibas, L. J., Knuth, D. E., and Sharir, M. 1992. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 1--6, 381--413.Google ScholarGoogle ScholarCross RefCross Ref
  21. Indermitte, C., Liebling, T., Troyanov, M., and Clémençon, H. 2001. Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theoretical Computer Science 263, 1--2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lévy, B., and Liu, Y. 2010. Lp centroidal Voronoi tessellation and its applications. ACM Trans. Graph. 29, 4, 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., and Yang, C. 2009. On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM Trans. Graph. 28, 4, 101:1--101:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liu, Y.-J., Chen, Z., and Tang, K. 2011. Construction of iso-contours, bisectors, and Voronoi diagrams on triangulated surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8, 1502--1517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Liu, Y., Pan, H., Snyder, J., Wang, W., and Guo, B. 2013. Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. 32, 4, 92:1--92:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lloyd, S. 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory. 28, 2, 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lu, L., Sun, F., Pan, H., and Wang, W. 2012. Global optimization of centroidal Voronoi tessellation with Monte Carlo approach. IEEE Transactions on Visualization and Computer Graphics 18, 11, 1880--1890. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Maehara, H. 2011. On a proper acute triangulation of a polyhedral surface. Discrete Mathematics 311, 17, 1903--1909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-optimized triangulations. ACM Trans. Graph. 30, 4, 103:1--103:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Okabe, A., Boots, B., Sugihara, K., and Chiu, S.-N. 2000. Spatial Tessellations: Concept and Applications of Voronoi Diagrams. Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experiment. Math. 2, 1, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  32. Rippa, S. 1990. Minimal roughness property of the Delaunay triangulation. Computer Aided Geometric Design 7, 6, 489--497. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rivin, I. 1994. Euclidean structures on simplicial surfaces and hyperbolic volume. Annals of Mathematics 139, 3, 553--580.Google ScholarGoogle ScholarCross RefCross Ref
  34. Saraf, S. 2009. Acute and nonobtuse triangulations of polyhedral surfaces. European Journal of Combinatorics 30, 4, 833--840. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. VanderZee, E., Hirani, A. N., Guoy, D., and Ramos, E. 2007. Well-centered planar triangulation-an iterative approach. In Proceedings of IMR '07, 121--138.Google ScholarGoogle Scholar
  36. Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete laplace operators: No free lunch. In Proceedings of SGP '07, 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. In Proceedings of SGP '09, 1445--1454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zamfirescu, T. 2002. Acute triangulations: a short survey. In Proceedings of the Sixth Annual Conference of the Romanian Society of Mathematical Sciences, 9--17.Google ScholarGoogle Scholar

Index Terms

  1. Efficient construction and simplification of Delaunay meshes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 6
        November 2015
        944 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2816795
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 November 2015
        Published in tog Volume 34, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader