skip to main content
research-article

Net and Prune: A Linear Time Algorithm for Euclidean Distance Problems

Published:10 December 2015Publication History
Skip Abstract Section

Abstract

We provide a general framework for getting expected linear time constant factor approximations (and in many cases FPTAS's) to several well known problems in Computational Geometry, such as k-center clustering and farthest nearest neighbor. The new approach is robust to variations in the input problem, and yet it is simple, elegant, and practical. In particular, many of these well studied problems which fit easily into our framework, either previously had no linear time approximation algorithm, or required rather involved algorithms and analysis. A short list of the problems we consider include farthest nearest neighbor, k-center clustering, smallest disk enclosing k points, kth largest distance, kth smallest m-nearest neighbor distance, kth heaviest edge in the MST and other spanning forest type problems, problems involving upward closed set systems, and more. Finally, we show how to extend our framework such that the linear running time bound holds with high probability.

References

  1. P. K. Agarwal, S. Har-Peled, and K. Varadarajan. 2005. Geometric approximation via coresets. In Combinatorial and Computational Geometry, J. E. Goodman, J. Pach, and E. Welzl (Eds.). Cambridge, New York.Google ScholarGoogle Scholar
  2. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. 2004. Approximating extent measures of points. J. Assoc. Comput. Mach. 51, 4, 606--635. DOI:http://dx.doi.org/10.1145/1008731.1008736 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. K. Agarwal, M. Sharir, and S. Toledo. 1994. Applications of parametric searching in geometric optimization. J. Algorithms 17, 292--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Aggarwal, R. Panigrahy, T. Feder, D. Thomas, K. Kenthapadi, S. Khuller, and A. Zhu. 2010. Achieving anonymity via clustering. ACM Trans. Algorithms 6, 3, Article 49, 19 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Aronov and S. Har-Peled. 2008. On approximating the depth and related problems. SIAM J. Comput. 38, 3, 899--921. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Bespamyatnikh and M. Segal. 2002. Fast algorithms for approximating distances. Algorithmica 33, 2, 263--269.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. B. Callahan and S. R. Kosaraju. 1995. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach. 42 (1995), 67--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. M. Chan. 2008. Well-separated pair decomposition in linear time? Inform. Process. Lett. 107, 5 (2008), 138--141. DOI:http://dx.doi.org/10.1016/j.ipl.2008.02.008 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. L. Clarkson. 1983. Fast algorithms for the all nearest neighbors problem. In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS). IEEE, 226--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. L. Clarkson. 1988. Applications of random sampling in computational geometry, II. In Proceedings of the 4th Annual Symposium on Computer Geometry. ACM, New York, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. L. Clarkson and P. W. Shor. 1989. Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387--421. http://cm.bell-labs.com/who/clarkson/rs2m.htmlGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Driemel, S. Har-Peled, and C. Wenk. 2012. Approximating the Fréchet distance for realistic curves in near linear time. Discrete Comput. Geom. 48 (2012), 94--127. Issue 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. ElGindy, H. Everett, and G. Toussaint. 1993. Slicing an ear using prune-and-search. Pattern Recogn. Lett. 14, 9, 719--722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Ene, B. Raichel, and S. Har-Peled. 2012. Fast clustering with lower bounds: No customer too far, no shop too small. In submission. http://sarielhp.org/papers/12/lbc/.Google ScholarGoogle Scholar
  15. J. Erickson. 1995. On the relative complexities of some geometric problems. In Proceedings of the 7th Canadian Conference on Computer Geometry. Carleton University, Ottawa, Canada, 85--90. http://compgeom.cs.uiuc.edu/∼jeffe/pubs/relative.html.Google ScholarGoogle Scholar
  16. G. N. Frederickson and D. B. Johnson. 1984. Generalized selection and ranking: Sorted matrices. SIAM J. Comput. 13 (1984), 14--30.Google ScholarGoogle ScholarCross RefCross Ref
  17. M. Golin, R. Raman, C. Schwarz, and M. Smid. 1995. Simple randomized algorithms for closest pair problems. Nordic J. Comput. 2 (1995), 3--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Gonzalez. 1985. Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293--306.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. Har-Peled. 2001. Clustering motion. In Proceedings of FOCS. IEEE, 84--93. http://sarielhp.org/p/01/cluster/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Har-Peled. 2004a. Clustering motion. Discrete Comput. Geom. 31, 4 (2004), 545--565. http://cs.uiuc.edu/∼sariel/research/papers/01/cluster/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Har-Peled. 2004b. No coreset, no cry. In Proceedings of FSTTCS. Springer, 324--335. http://cs.uiuc.edu/∼sariel/papers/02/2slab/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Har-Peled. 2011. Geometric Approximation Algorithms. Mathematical Surveys and Monographs, Vol. 173. Amer. Math. Soc., Boston, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Har-Peled and A. Kushal. 2007. Smaller coresets for k-median and k-means clustering. Discrete Comput. Geom. 37, 1, 3--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Har-Peled and S. Mazumdar. 2004. Coresets for k-median and k-means clustering and their applications. In Proceedings of STOC. ACM, 291--300. http://cs.uiuc.edu/simsariel/research/papers/03/kcoreset/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Har-Peled and S. Mazumdar. 2005. Fast algorithms for computing the smallest k-enclosing disc. Algorithmica 41, 3 (2005), 147--157. http://cs.uiuc.edu/simsariel/papers/03/min_disk/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Har-Peled and M. Mendel. 2006. Fast construction of nets in low dimensional metrics, and their applications. SIAM J. Comput. 35, 5 (2006), 1148--1184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Har-Peled and B. Raichel. 2011. The Fréchet distance revisited and extended. In Proceedings of SoCG. ACM, New York, 448--457. http://sarielhp.org/papers/10/frechet3d/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Har-Peled and B. Raichel. 2013. Net and Prune: A linear time algorithm for Euclidean distance problems. In Proceedings of STOC. ACM, New York, 605--614. http://cs.uiuc.edu/simsariel/papers/12/aggregate/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Har-Peled and B. Raichel. 2014. Net and Prune: A linear time algorithm for Euclidean distance problems. CoRR abs/1409.7425 (2014). http://arxiv.org/abs/1409.7425.Google ScholarGoogle Scholar
  30. S. Khuller and Y. Matias. 1995. A simple randomized sieve algorithm for the closest-pair problem. Inform. Comput. 118, 34--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. Krauthgamer and J. R. Lee. 2004. Navigating nets: Simple algorithms for proximity search. In Proceedings of SODA. Society for Industrial and Applied Mathematics, Philadelphia, PA, 798--807. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C.-Y. Lo, J. Matoušek, and W. L. Steiger. 1994. Algorithms for ham-sandwich cuts. Discrete Comput. Geom. 11, 433--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Matoušek, M. Sharir, and E. Welzl. 1996. A subexponential bound for linear programming. Algorithmica 16 (1996), 498--516.Google ScholarGoogle ScholarCross RefCross Ref
  34. N. Megiddo. 1983. Applying parallel computation algorithms in the design of serial algorithms. J. Assoc. Comput. Mach. 30, 4 (1983), 852--865. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. N. Megiddo. 1984. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput. Mach. 31 (1984), 114--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Motwani and P. Raghavan. 1995. Randomized Algorithms. Cambridge University Press, Cambridge, UK. http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. K. Mulmuley. 1994. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  38. M. O. Rabin. 1976. Probabilistic algorithms. In Algorithms and Complexity: New Directions and Recent Results, J. F. Traub (Ed.). Academic Press, Orlando, FL, USA, 21--39.Google ScholarGoogle Scholar
  39. J. Salowe. 1997. Parametric search. In Handbook of Discrete and Computational Geometry, J. E. Goodman and J. O'Rourke (Eds.). CRC Press LLC, Boca Raton, FL, Chapter 37, 683--698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Schönhage. 1979. On the power of random access machines. In Proc. 6th Internat. Colloq. Automata Lang. Prog. (Lecture Notes Comput. Sci.), Vol. 71. Springer-Verlag, London, UK, 520--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Sharir and E. Welzl. 1992. A combinatorial bound for linear programming and related problems. In Proceedings of the 9th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 577. Springer, 569--579. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Smid. 2000. Closest-point problems in computational geometry. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia (Eds.). Elsevier, Amsterdam, Netherlands, 877--935.Google ScholarGoogle Scholar
  43. R. van Oostrum and R. C. Veltkamp. 2004. Parametric search made practical. Comput. Geom. Theory Appl. 28, 2--3, 75--88. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Net and Prune: A Linear Time Algorithm for Euclidean Distance Problems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of the ACM
      Journal of the ACM  Volume 62, Issue 6
      December 2015
      304 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/2856350
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 December 2015
      • Accepted: 1 September 2015
      • Revised: 1 January 2015
      • Received: 1 September 2013
      Published in jacm Volume 62, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader