skip to main content
10.1145/2858036.2858161acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Honorable Mention

Direct Manipulation in Tactile Displays

Published:07 May 2016Publication History

ABSTRACT

Tactile displays have predominantly been used for information transfer using patterns or as assistive feedback for interactions. With recent advances in hardware for conveying increasingly rich tactile information that mirrors visual information, and the increasing viability of wearables that remain in constant contact with the skin, there is a compelling argument for exploring tactile interactions as rich as visual displays. Direct Manipulation underlies much of the advances in visual interactions. In this work, we introduce the concept of a Direct Manipulation-enabled Tactile display (DMT). We define the concepts of a tactile screen, tactile pixel, tactile pointer, and tactile target which enable tactile pointing, selection and drag & drop. We build a proof of concept tactile display and study its precision limits. We further develop a performance model for DMTs based on a tactile target acquisition study. Finally, we study user performance in a real-world DMT menu application. The results show that users are able to use the application with relative ease and speed.

Skip Supplemental Material Section

Supplemental Material

pn0727-file3.mp4

mp4

81.4 MB

p3683-gupta.mp4

mp4

183.3 MB

References

  1. Stephen A Brewster and Alison King. 2005. The design and evaluation of a vibrotactile progress bar. In World Haptics 2005. IEEE, 499--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Matt Brian. 2015. Sony is crowdfunding a smart watch with a dumb face. (2015). http://www.engadget.com/ 2015/08/31/sony-wena-smartwatch/Google ScholarGoogle Scholar
  3. William Buxton. 1990. A three-state model of graphical input. In Proc. INTERACT'90. 449--456. http://billbuxton.com/3stateModel.pdf Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Marta G. Carcedo, Soon Hau Chua, Simon T. Perrault, Paweł Wozniak, Raj Joshi, Mohammad Obaid, Morten Fjeld, and Shengdong Zhao. 2016. HaptiColor: Interpolating Color Information as Haptic Feedback to Assist the Color Blind. In Proc. CHI '16. 1--12. http://dx.doi.org/10.1145/2858036.2858220 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Géry Casiez, Daniel Vogel, Ravin Balakrishnan, and Andy Cockburn. 2008. The impact of control-display gain on user performance in pointing tasks. Human-Computer Interaction 23, 3 (2008), 215--250. http://dx.doi.org/10.1080/07370020802278163Google ScholarGoogle ScholarCross RefCross Ref
  6. Hsiang-yu Chen, Joseph Santos, Matthew Graves, Kwangtaek Kim, and Hong Z. Tan. 2008. Tactor Localization at the Wrist. In Proc. Eurohaptics'08. 209--218. http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.151.7152&rank=1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Roger W. Cholewiak and Amy A. Collins. 2003. Vibrotactile localization on the arm: Effects of place, space, and age. Percept. Psychophys. 65, 7 (2003), 1058--1077. http: //www.springerlink.com/index/10.3758/BF03194834Google ScholarGoogle ScholarCross RefCross Ref
  8. Sarah A Douglas, Arthur E Kirkpatrick, and I Scott MacKenzie. 1999. Testing pointing device performance and user assessment with the ISO 9241, Part 9 standard. In Proc. CHI '99. 215--222. http://dx.doi.org/10.1145/302979.303042 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. James J. Gibson. 1962. Observations on Active Touch. Psychological Review 69, 6 (1962), 477--491. http://psycnet.apa.org/psycinfo/1963-06036-001Google ScholarGoogle ScholarCross RefCross Ref
  10. Ali Israr and Ivan Poupyrev. 2011. Tactile Brush: Drawing on Skin with a Tactile Grid Display. In Proc. CHI'11. 2019--2028. http://doi.acm.org/10.1145/1978942.1979235 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Yeon Sub Jin, Han Yong Chun, Eun Tai Kim, and Sungchul Kang. 2014. VT-ware: A wearable tactile device for upper extremity motion guidance. In Proc. RO-MAN'14. 335--340. http://ieeexplore.ieee.org/ lpdocs/epic03/wrapper.htm?arnumber=6926275Google ScholarGoogle ScholarCross RefCross Ref
  12. 12. Seungyon "Claire" Lee and Thad Starner. 2010. BuzzWear: alert perception in wearable tactile displays on the wrist. In Proc. CHI'10. 433--442. http: //dl.acm.org/citation.cfm?id=1753326.1753392 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Charles Lenay, S. Canu, and P. Villon. 1997. Technology and perception: the contribution of sensory substitution systems. In Proc. ICCT'97. 44--53. http://dx.doi.org/10.1109/CT.1997.617681 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Shachar Maidenbaum, Sami Abboud, and Amir Amedi. 2014. Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation. Neuroscience & Biobehavioral Reviews 41 (2014), 3--15.Google ScholarGoogle ScholarCross RefCross Ref
  15. Michael Matscheko, Alois Ferscha, Andreas Riener, and Manuel Lehner. 2010a. Tactor placement in wrist worn wearables. In Proc. ISWC'10. 1--8. http://ieeexplore.ieee.org/lpdocs/epic03/ wrapper.htm?arnumber=5665867Google ScholarGoogle ScholarCross RefCross Ref
  16. Michael Matscheko, Alois Ferscha, Andreas Riener, and Manuel Lehner. 2010b. Tactor placement in wrist worn wearables. In Int. Symp. Wearable Comput. 2010. IEEE, 1--8. DOI: http://dx.doi.org/10.1109/ISWC.2010.5665867Google ScholarGoogle ScholarCross RefCross Ref
  17. Hugo Nicolau, João Guerreiro, Tiago Guerreiro, and Luís Carriço. 2013. UbiBraille: designing and evaluating a vibrotactile Braille-reading device. In Proc. ASSETS'13. 1--8. http://dx.doi.org/10.1145/2513383.2513437 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jerome Pasquero, Scott J. Stobbe, and Noel Stonehouse. 2011. A haptic wristwatch for eyes-free interactions. In Proc. CHI'11. 3257--3266. http: //dl.acm.org/citation.cfm?id=1978942.1979425 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Rahal, Jongeun Cha, A.E. Saddik, J. Kammerl, and E. Steinbach. 2009. Investigating the influence of temporal intensity changes on apparent movement phenomenon. In Virtual Environments, Human-Computer Interfaces and Measurements Systems, 2009. VECIMS '09. IEEE International Conference on. 310--313. DOI: http://dx.doi.org/10.1109/VECIMS.2009.5068914 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Christian Schönauer, Kenichiro Fukushi, Alex Olwal, Hannes Kaufmann, and Ramesh Raskar. 2012. Multimodal motion guidance: techniques for adaptive and dynamic feedback. In Proc. ICMI'12. 133--140. http: //dl.acm.org/citation.cfm?id=2388676.2388706 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Languages. Computer 16, 8 (1983), 57--69. http://dx.doi.org/10.1109/MC.1983.1654471 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Georg von Bekesy. 1957. Sensations on the Skin Similar to Directional Hearing, Beats, and Harmonics of the Ear. J. Acoust. Soc. Am. 29, 4 (1957), 489--501. http://psycnet.apa.org/doi/10.1121/1.1908938Google ScholarGoogle ScholarCross RefCross Ref
  23. Cheng Xu, Ali Israr, Ivan Poupyrev, Olivier Bau, and Chris Harrison. 2011. Tactile display for the visually impaired using TeslaTouch. In Ext. Abs. CHI'11. 317--322. http://dx.doi.org/10.1145/1979742.1979705 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Direct Manipulation in Tactile Displays

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '16: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
      May 2016
      6108 pages
      ISBN:9781450333627
      DOI:10.1145/2858036

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 May 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '16 Paper Acceptance Rate565of2,435submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader