skip to main content
10.1145/2858036.2858223acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access

Expressy: Using a Wrist-worn Inertial Measurement Unit to Add Expressiveness to Touch-based Interactions

Authors Info & Claims
Published:07 May 2016Publication History

ABSTRACT

Expressiveness, which we define as the extent to which rich and complex intent can be conveyed through action, is a vital aspect of many human interactions. For instance, paint on canvas is said to be an expressive medium, because it affords the artist the ability to convey multifaceted emotional intent through intricate manipulations of a brush. To date, touch devices have failed to offer users a level of expressiveness in their interactions that rivals that experienced by the painter and those completing other skilled physical tasks. We investigate how data about hand movement -- provided by a motion sensor, similar to those found in many smart watches or fitness trackers -- can be used to expand the expressiveness of touch interactions. We begin by introducing a conceptual model that formalizes a design space of possible expressive touch interactions. We then describe and evaluate Expressy, an approach that uses a wrist-worn inertial measurement unit to detect and classify qualities of touch interaction that extend beyond those offered by today's typical sensing hardware. We conclude by describing a number of sample applications, which demonstrate the enhanced, expressive interaction capabilities made possible by Expressy.

Skip Supplemental Material Section

Supplemental Material

pn1036-file3.mp4

mp4

94.1 MB

References

  1. Apple, (2015). iOS 9 - What's New - Apple (UK). {online} Available at: http://www.apple.com/uk/ios/whats-new/ {Accessed 23 Sep. 2015}.Google ScholarGoogle Scholar
  2. Baglioni, M., Malacria, S., Lecolinet, E. & Guiard, Y. 2011. Flick-and-brake: finger control over inertial/sustained scroll motion. In CHI '11 Extended Abstracts on Human Factors in Computing Systems (CHI EA '11), 2281--2286. http://doi.acm.org/10.1145/1979742.1979853 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Benko, H., Saponas, T. S., Morris, D., & Tan, D. 2009. Enhancing input on and above the interactive surface with muscle sensing. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ITS '09), 93--100. http://doi.acm.org/10.1145/1731903.1731924 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bi, X., Moscovich, T., Ramos, G., Balakrishnan, R., & Hinckley, K. 2008. An exploration of pen rolling for pen-based interaction. In Proceedings of the 21st annual ACM symposium on User interface software and technology (UIST '08). ACM, NY, NY, USA, 191200. http://dx.doi.org/10.1145/1449715.1449745 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bonnet, D., Appert, C., & Beaudouin-Lafon, M. 2013. Extending the vocabulary of touch events with ThumbRock. In Proceedings of Graphics Interface 2013 (GI '13), 221--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Boring, S., Ledo, D., Chen, X. A., Marquardt, N., Tang, A., & Greenberg, S. 2012. The fat thumb: using the thumb's contact size for single-handed mobile interaction. In Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services companion (MobileHCI '12), 207208. http://doi.acm.org/10.1145/2371664.2371711 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Butler, A., Izadi, S. & Hodges, S. 2008. SideSight: multi-touch interaction around small devices. In Proceedings of the 21st annual ACM symposium on User interface software and technology (UIST '08), 201--204. http://doi.acm.org/10.1145/1449715.1449746 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Buxton, W. 1995. Chunking and phrasing and the design of human-computer dialogues. In Human-computer interaction, Baecker, R., Grudin, J., Buxton, W., & Greenberg, S. (Eds.). Morgan Kaufmann Publishers Inc., 494--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Buxton, W. 1990. A three-state model of graphical input. Human-computer interaction-INTERACT. Vol. 90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cao, X., Wilson, A. D., Balakrishnan, R., Hinckley, K., & Hudson, S.E. 2008. Shapetouch: Leveraging contact shape on interactive surfaces. In Proceedings of the 3rd IEEE International Workshop on Horizontal Interactive Human Computer Systems (TABLETOP '08), 129--136. http://dx.doi.org/10.1109/TABLETOP.2008.4660195Google ScholarGoogle Scholar
  11. Chen, X. A., Grossman, T., Wigdor, D. J., & Fitzmaurice, G. 2014. Duet: exploring joint interactions on a smart phone and a smart watch. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14), 159--168. http://doi.acm.org/10.1145/2556288.2556955 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, X. A., Schwarz, J., Harrison, C., Mankoff, J., & Hudson, S. E. 2014. Air+touch: interweaving touch & in-air gestures. In Proceedings of the 27th annual ACM symposium on User interface software and technology (UIST '14), 519--525. http://doi.acm.org/10.1145/2642918.2647392 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Davidson, P. L. & Han, J. Y. 2008. Extending 2D object arrangement with pressure-sensitive layering cues. In Proceedings of the 21st annual ACM symposium on User interface software and technology (UIST '08), 87--90. http://doi.acm.org/10.1145/1449715.1449730 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Deyle, T., Palinko, S., Poole, E. S., & Starner, T. 2007. Hambone: A Bio-Acoustic Gesture Interface. In Proceedings of the 11th IEEE International Symposium on Wearable Computers (ISWC '07), 1--8. http://dx.doi.org/10.1109/ISWC.2007.4373768 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Essl, G., Rohs, M. & Kratz, S. 2010. Use the force (or something)-pressure and pressure-like input for mobile music performance. In Proceedings of the International Conference on New Interfaces for Musical Expression (NIME '10).Google ScholarGoogle Scholar
  16. Fitbit Surge. Available at: http://www.fitbit.com/uk/surge {Accessed March 2015}Google ScholarGoogle Scholar
  17. Goel, M., Wobbrock, J., & Patel, S. 2012. GripSense: using built-in sensors to detect hand posture and pressure on commodity mobile phones. In Proceedings of the 25th annual ACM symposium on User interface software and technology (UIST '12), 545--554. http://doi.acm.org/10.1145/2380116.2380184 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hancock, M., Ten Cate, T., Carpendale, S., & Isenberg, T. 2010. Supporting sandtray therapy on an interactive tabletop. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '10), 21332142. http://doi.acm.org/10.1145/1753326.1753651 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., & Want, R. 1998. Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '98), 17--24. http://dx.doi.org/10.1145/274644.274647 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Harrison, C., Schwarz, J., & Hudson, S. E. 2011. TapSense: enhancing finger interaction on touch surfaces. In Proceedings of the 24th annual ACM symposium on User interface software and technology (UIST '11), 627--636. http://doi.acm.org/10.1145/2047196.2047279 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Heo, S. & Lee, G. 2011. Force gestures: augmenting touch screen gestures with normal and tangential forces. In Proceedings of the 24th annual ACM symposium on User interface software and technology (UIST '11), 621626. http://doi.acm.org/10.1145/2047196.2047278 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hinckley, K. & Song, H. 2011. Sensor synaesthesia: touch in motion, and motion in touch. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11), 801--810. http://doi.acm.org/10.1145/1978942.1979059 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hinckley, K., Chen, X. & Benko, H. 2013. Motion and context sensing techniques for pen computing. In Proceedings of Graphics Interface 2013. Canadian Information Processing Society, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hinckley, K. et al. 2014. Sensing techniques for tablet+stylus interaction. In Proceedings of the 27th annual ACM symposium on User interface software and technology - UIST '14. NY, NY, USA: ACM Press, 605--614. http://dx.doi.org/10.1145/2642918.2647379 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hoggan, E., Williamson, J., Oulasvirta, A., Nacenta, M., Kristensson, P.O., & Lehtiö, A. 2013. Multi-touch rotation gestures: Performance and ergonomics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '13), 3047--3050. http://doi.acm.org/10.1145/2470654.2481423 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hwang, S., Bianchi, A., & Wohn, K. 2013. VibPress: estimating pressure input using vibration absorption on mobile devices. In Proceedings of the 15th international conference on Human-computer interaction with mobile devices and services (MobileHCI '13), 31--34. http://doi.acm.org/10.1145/2493190.2493193 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kim, D., Hilliges, O., Izadi, S., Butler, A. D., Chen, J., Oikonomidis, I., & Olivier, P. 2012. Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor. In Proceedings of the 25th annual ACM symposium on User interface software and technology (UIST '12), 167--176. http://doi.acm.org/10.1145/2380116.2380139 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kharrufa, A., Nicholson, J., Dunphy, P., Hodges, S., Briggs, P., & Olivier, P. 2015. Using IMUs to Identify Supervisors on Touch Devices. In Proceedings of the IFIP TC.13 International Conference on HumanComputer Interaction (INTERACT '15), 565--583. http://dx.doi.org/10.1007/978--3--319--22668--2_44Google ScholarGoogle ScholarCross RefCross Ref
  29. Lopes, P., Jota, R., & Jorge, J.A. 2011. Augmenting touch interaction through acoustic sensing. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ITS '11), 53--56. http://doi.acm.org/10.1145/2076354.2076364 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Madgwick, S. O. H., Harrison, A. J. L., & Vaidyanathan, R. 2011. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR '11), 1--7. http://dx.doi.org/10.1109/ICORR.2011.5975346Google ScholarGoogle ScholarCross RefCross Ref
  31. Malle, B. F., & Knobe, J. The folk concept of intentionality. Journal of Experimental Social Psychology (1997), 33(2), 101--121.Google ScholarGoogle Scholar
  32. Marquardt, N., Jota, R., Greenberg, S., & Jorge, J. A. 2011. The continuous interaction space: interaction techniques unifying touch and gesture on and above a digital surface. In Proceedings of the 13th IFIP TC 13 international conference on Human-computer interaction (INTERACT '11), 461--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Matejka, J., Grossman, T., & Fitzmaurice, G. 2013. Swifter: improved online video scrubbing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '13), 1159--1168. http://doi.acm.org/10.1145/2470654.2466149 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Microsoft Band. Available at: http://www.microsoft.com/Microsoft-Band/en-us {Accessed March 2015}Google ScholarGoogle Scholar
  35. Murugappan, S., Vinayak, Elmqvist, N., & Ramani, K. 2012. Extended multitouch: recovering touch posture and differentiating users using a depth camera. In Proceedings of the 25th annual ACM symposium on User interface software and technology (UIST '12), 487--496. http://doi.acm.org/10.1145/2380116.2380177 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Nguyen, Q., & Kipp, M. 2014. Orientation matters: efficiency of translation-rotation multitouch tasks. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems (CHI '14), 2013--2016. http://doi.acm.org/10.1145/2556288.2557399 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Open Movement WAX9. Available at: http://github.com/digitalinteraction/openmovement/wiki /WAX9 {Accessed January 2015}Google ScholarGoogle Scholar
  38. Ramos, G., Boulos, M., & Balakrishnan, R. 2004. Pressure widgets. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '04), 487--494. http://doi.acm.org/10.1145/985692.985754 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ramos, G. and Balakrishnan, R. 2005. Zliding: Fluid Zooming and Sliding for High Precision Parameter Manipulation. In Proceedings of the 18th annual ACM symposium on User interface software and technology UIST '05. NY, NY, USA: ACM Press, 143. http://dx.doi.org/10.1145/1095034.1095059 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ramos, G. and Balakrishnan, R. 2007. Pressure marks. In Proceedings of the SIGCHI conference on Human factors in computing systems - CHI '07. NY, NY, USA: ACM Press, 1375. http://dx.doi.org/10.1145/1240624.1240834 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xiao, R., Schwarz, J. & Harrison, C. 2015. Estimating 3D Finger Angle on Commodity Touchscreens. In Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces (ITS '15). ACM, NY, NY, USA, 47--50. http://dx.doi.org/10.1145/2817721.2817737 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Rogers, S., Williamson, J., Stewart, C., & MurraySmith, R. 2011. AnglePose: robust, precise capacitive touch tracking via 3d orientation estimation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11), 2575--2584. http://doi.acm.org/10.1145/1978942.1979318 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sprang, S. (2015). Brushes. {online} Brushesapp.com. Available at: http://www.brushesapp.com/ {Accessed 22 Sep. 2015}.Google ScholarGoogle Scholar
  44. Sturman, D. J. & Zeltzer, D. A. 1994. Survey of Glovebased Input. IEEE Comput. Graph. Appl. 14 (1), 30--39. http://dx.doi.org/10.1109/38.250916 Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, F., & Ren, X. 2009. Empirical evaluation for finger input properties in multi-touch interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '09), 1063--1072. http://doi.acm.org/10.1145/1518701.1518864 Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wang, F., Cao, X., Ren, X., & Irani, P. Detecting and leveraging finger orientation for interaction with directtouch surfaces. In Proceedings of the 22nd annual ACM symposium on User interface software and technology (UIST '09), 23--32. http://doi.acm.org/10.1145/1622176.1622182 Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wilson, A. D., Izadi, S., Hilliges, O., Garcia-Mendoza, A., and Kirk, D. 2008. Bringing physics to the surface. In Proceedings of the 21st annual ACM symposium on User interface software and technology (UIST '08), 6776. http://doi.acm.org/10.1145/1449715.1449728 Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Xiao, R., Schwarz, J. and Harrison, C. 2015. Estimating 3D Finger Angle on Commodity Touchscreens. In Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces - ITS '15. NY, NY, USA: ACM Press, 47--50. http://dx.doi.org/10.1145/2817721.2817737 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Expressy: Using a Wrist-worn Inertial Measurement Unit to Add Expressiveness to Touch-based Interactions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader