skip to main content
10.1145/3313831.3376378acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access

Pac-Euglena: A Living Cellular Pac-Man Meets Virtual Ghosts

Authors Info & Claims
Published:23 April 2020Publication History

ABSTRACT

The advancement of biotechnology enabled the development of "biotic video games", where human players manipulate real biological samples for fun and educational human-biology interactions. However, new design principles are needed to both leverage and mitigate biological properties (e.g., variability and stochasticity), and create unique play experiences that transcend traditional video games. This paper describes the implementation of Pac-Euglena, a biotic Pac-Man analog, where players guide live microscopic Euglena cells with light stimuli through a physical microfluidic maze. Through use of multi-modal stimuli, a mixed biology-digital-human reality is achieved, enabling cell interactions with virtual ghosts and collectibles. Through an iterative design process, we illustrate challenges and strategies for designing games with living organisms. A user study (n=18, conducted at a university event) showed that Pac-Euglena was fun, stimulated curiosity, and taught users about Euglena. We conclude with five general guidelines for the design and development of biotic games and HBI interfaces.

Skip Supplemental Material Section

Supplemental Material

paper251vf.mp4

mp4

12.5 MB

paper251pv.mp4

mp4

3.9 MB

a251-lam-presentation.mp4

mp4

51.1 MB

References

  1. American Association for the Advancement of Science, 1994. Benchmarks for Science Literacy. Oxford University Press, USA.Google ScholarGoogle Scholar
  2. A. Arbelle, J. Reyes, J.Y. Chen, G. Lahav, and T.R. Raviv (2018). A Probabilistic Approach to Joint Cell Tracking and Segmentation in High-Throughput Microscopy Videos. Medical Image Analysis, 47, 140--152.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Beck and A. H. Katcher (1984). A New Look at Pet-Facilitated Therapy. Journal of the American Veterinary Medical Association, 184(4), 414--421.Google ScholarGoogle Scholar
  4. Z. Bilda, E. Edmonds, and L. Candv (2008). Designing for Creative Engagement. Design Studies, 29(6), 525--540.Google ScholarGoogle ScholarCross RefCross Ref
  5. R.W. Bybee (2013). The Next Generation Science Standards and the Life Sciences. Science and Children, 50(6), 7--14.Google ScholarGoogle Scholar
  6. S. Chen, 2010. The View of Scientific Inquiry Conveyed by Simulation-Based Virtual Laboratories. Comput. Educ., 55(3), 1123--1130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Chen, W.H. Chang, C.H. Lai, and C.Y. Tsai, 2014. A Comparison of Students' Approaches to Inquiry, Conceptual Learning, and Attitudes in Simulation-Based and Microcomputer-Based Laboratories. Science Education, 98.Google ScholarGoogle Scholar
  8. A.D. Cheok, R.T.K.C. Tan, R.L. Peiris, O.N.N. Fernando, J.T.K. Soon, I.J.P. Wijesena, and J.Y.P. Sen (2011). Metazoa Ludens: Mixed-Reality Interaction and Play for Small Pets and Humans. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41(5), 876--891.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K.P. Chien, C.Y. Tsai, H.L. Chen, W.H. Chang, and S.F. Chen (2015). Learning differences and eye fixation patterns in virtual and physical science laboratories. Computers & Education, 82, 191--201.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. N.J. Cira, A.M. Chung, A.K. Denisin, S. Rensi, G.N. Sanchez, S.R. Quake, and I.H. Riedel-Kruse (2015). A Biotic Game Design Project for Integrated Life Science and Engineering Education. PLoS Biology, 13(3), e1002110.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popovic, and Foldit Players (2010). Predicting Protein Structures with a Multiplayer Online Game. Nature, 466(7307), 756--760.Google ScholarGoogle ScholarCross RefCross Ref
  12. C. Crawford, 1984. The Art of Computer Game Design. McGraw-Hill, Inc.Google ScholarGoogle Scholar
  13. T. de Jong, M.C. Linn, and Z.C. Zacharia, 2013. Physical and Virtual Laboratories in Science and Engineering Education. Science, 340, 305--308.Google ScholarGoogle ScholarCross RefCross Ref
  14. B. Diehn (1973). Phototaxis and Sensory Transduction in Euglena. Science, 181(4104), 1009--1015.Google ScholarGoogle ScholarCross RefCross Ref
  15. S. Diez, F. Ruhnow, and D. Zwicker (2011). Tracking Single Particles and Elongated Filaments with Nanometer Precision. Biophysical Journal, 100(11), 2820--2828.Google ScholarGoogle ScholarCross RefCross Ref
  16. K. Emmerich and M. Masuch (2018). Watch Me Play: Does Social Facilitation Apply to Digital Games? In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, ACM, 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E.E. Toth, B.L. Morrow, and L.R. Ludvico, 2009. Designing Blended Inquiry Learning in a Laboratory Context: A Study of Incorporating Hands-On and Virtual Laboratories. Innovative Higher Education, 33(5), 333--344.Google ScholarGoogle ScholarCross RefCross Ref
  18. F. French, S. Baskin, B. Wallace, A.D. Cheok, A. Zamanzky, and E. Nannoni (2017). FarmJam 2017: Designing Enrichment for Farm Animals. In Proceedings of the Fourth International Conference on Animal-Computer Interaction, ACM, 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Gerber, H. Kim, and I.H. Riedel-Kruse (2016). Interactive Biotechnology: Design Rules for Integrating Biological Matter into Digital Games. In Digital Games Research Association (DiGRA) and the Foundations of Digital Games, 1(13).Google ScholarGoogle Scholar
  20. L. Haddon and D. Skinner (1991). The enigma of the micro: lessons from the British home computer boom. Social Science Computer Review 9, 3 (Fall), 435--449.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Hakovirta and L. Lucia (2019). Informal STEM Education Will Accelerate the Bioeconomy. Nature Biotechnology, 37, 103.Google ScholarGoogle ScholarCross RefCross Ref
  22. H. Harvey, M. Havard, D. Magnus, M.K. Cho, and I.H. Riedel-Kruse (2014). Innocent Fun or "Microslavery"? Hastings Center Report, 44(6), 38--46.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. Hertz (2008). Cockroach Controlled Mobil Robot: Control and Communication in the Animal and the Machine. http://www.conceptlab.com/roachbot.Google ScholarGoogle Scholar
  24. Z. Hossain, E. Bumbacher, A. Brauneis, M. Diaz, A. Saltarelli, P. Blikstein, and I. H. Riedel-Kruse (2018). Design Guidelines and Empirical Case Study for Scaling Authentic Inquiry-based Science Learning via Open Online Courses and Interactive Biology Cloud Labs. International Journal of Artificial Intelligence in Education, 28(4), 478--507.Google ScholarGoogle ScholarCross RefCross Ref
  25. Z. Hossain, E.W. Bumbacher, A.M. Chung, H. Kim, C. Litton, A.D. Walter, S.N. Pradhan, K. Jona, P. Blikstein, and I.H. Riedel-Kruse (2016). Interactive and Scalable Biology Cloud Experimentation for Scientific Inquiry and Education. Nature Biotechnology, 34(12), 12931298.Google ScholarGoogle ScholarCross RefCross Ref
  26. Z. Hossain, X. Jin, E.W. Bumbacher, A.M. Chung, S. Koo, J.D. Shapiro, C.Y. Truong, S. Choi, N.D. Orloff, P. Blikstein, and I.H. Riedel-Kruse (2015). Interactive Cloud Experimentation for Biology: An Online Education Case Study. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM, 3681--3690.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H. Kim, L.C. Gerber, D. Chiu, S.A. Lee, N.J. Cira, S.Y. Xia, and I.H. Riedel-Kruse (2016). LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education. PLoS ONE, 11(10), e0162602.Google ScholarGoogle ScholarCross RefCross Ref
  28. H. Kim, L.C. Gerber, and I.H. Riedel-Kruse (2016). Interactive Biotechnology: Building Your Own Biotic Game Setup to Play with Living Microorganisms. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, ACM, 1000--1002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Kuribayashi and A. Wakita (2006). PlantDisplay: Turning Houseplants into Ambient Display. In Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACM, 40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A.T. Lam, J. Ma, C. Barr, S.A. Lee, A.K. White, K. Yu, and I.H. Riedel-Kruse (2019). First-Hand, Immersive Full-Body Experiences with Living Cells Through Interactive Museum Exhibits. Nature Biotechnology, 37(10), 1238--1241.Google ScholarGoogle ScholarCross RefCross Ref
  31. A.T. Lam, K.G. Samuel-Gama, J. Griffin, M. Loeun, L.C. Gerber, Z. Hossain, N.J. Cira, S.A. Lee, and I.H. Riedel-Kruse (2017). Device and Programming Abstractions for Spatiotemporal Control of Active Micro-Particle Swarms. Lab on a Chip (17)8, 1442--1451.Google ScholarGoogle Scholar
  32. M.H. Lamers and W. van Eck (2012). Why Simulate? Hybrid Biological-Digital Games. In Proceedings of the 2012 European Conference on Applications of Evolutionary Computation, ACM, 214--223.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Lee, W. Kladwang, M. Lee, D. Cantu, M. Azizyan, H. Kim, A. Limpaecher, S. Yoon, A. Treuille, R. Das, and EteR.N.A.Players (2014). RNA Design Rules from a Massive Open Laboratory. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2122--2127.Google ScholarGoogle ScholarCross RefCross Ref
  34. S.A. Lee, E. Bumbacher, A.M. Chung, N. Cira, B. Walker, J.Y. Park, B. Starr, P. Blikstein, and I.H. Riedel-Kruse (2015). Trap it!: A Playful HumanBiology Interaction for a Museum Installation. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM, 2593--2602.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S.A. Lee, A.M. Chung, N. Cira, and I.H. RiedelKruse (2015). Tangible Interactive Microbiology for Informal Science Education. In Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, ACM, 273280.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. Liu, C. Dede, R. Huang, and J. Richards (Eds). 2017. Virtual, Augmented, and Mixed Realities in Education. Springer Singapore.Google ScholarGoogle Scholar
  37. H. Lowood (2009). Videogames in Computer Space: The Complex History of Pong. IEEE Annals of the History of Computing, 31(3), 5--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Mayer, L. Lischke, J.E. Grønbæk, Z. Sarsenbayeva, J. Vogelsang, P. Wozniak, N. Henze, and G. Jacucci (2018). Pac-Many: Movement Behavior when Playing Collaborative and Competitive Games on Large Displays. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, ACM, 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. Quinn, H. Schweingruber, T. Keller (Eds.). 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. The National Academies Press, Washington, D.C.Google ScholarGoogle Scholar
  40. I.H. Riedel-Kruse, A.M. Chung, B. Dura, A.L. Hamilton, and B.C. Lee (2011). Design, Engineering and Utility of Biotic Games. Lab on a Chip, 11(1), 14--22.Google ScholarGoogle Scholar
  41. Y. Rogers, M. Scaife, S. Gabrielli, H. Smith, and E. Harris (2002). A Conceptual Framework for Mixed Reality Environments: Designing Novel Learning Activities for Young Children. Presence: Teleoperators and Virtual Environments, 11(6), 677--686.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. L. Sandell and D. Sakai (2011). Mammalian Cell Culture. Current Protocols Essnetial Laboratory Techniques, 5(1), 4.3.1--4.3.32.Google ScholarGoogle Scholar
  43. J. Schell. 2008. The Art of Game Design: A Book of Lenses. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google ScholarGoogle Scholar
  44. A.D.S.E. Silva and D.M. Sutko (2009). Digital cityscapes: Merging digital and urban playspaces. Peter Lang Publishing Inc.Google ScholarGoogle Scholar
  45. A.C.H. Tsang, A.T. Lam, and I.H. Riedel-Kruse (2018). Polygonal Motion and Adaptable Phototaxis via Flagellar Beat Switching in the Microswimmer Euglena Gracilis. Nature Physics, 14(12), 1216--1222.Google ScholarGoogle ScholarCross RefCross Ref
  46. W. van Eck and M.H. Lamers (2006). Animal Controlled Computer Games: Playing Pac-Man Against Real Crickets. In Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 31--36.Google ScholarGoogle Scholar
  47. W. van Eck and M.H. Lamers (2013). Hybrid Biological-Digital Systems in Artistic and Entertainment Computing. Leonardo, 46(2), 151--158.Google ScholarGoogle Scholar
  48. P. Washington, K.G. Samuel-Gama, S. Goyal, A. Ramaswami, and I.H. Riedel-Kruse (2018). Prototyping Biotic Games and Interactive Experiments with JavaScript. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, ACM, 1--4.Google ScholarGoogle Scholar
  49. P. Washington, K.G. Samuel-Gama, S. Goyal, A. Ramaswami, and I.H. Riedel-Kruse (2019). Interactive Programming Paradigm for Real-Time Experimentation with Remote Living Matter. Proceedings of the National Academy of Sciences of the United States of America, 116(12), 54115419.Google ScholarGoogle Scholar
  50. J. Wessnitzer, A. Asthenidis, G. Petrou, and B. Webb (2011). A Cricket-Controlled Robot Orienting Towards a Sound Source. In Proceedings of the 12th Annual Conference on Towards Autonomous Robotic Systems, ACM, 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. C.C. Wilson (1991). The pet as an anxiolytic intervention. Journal of Nervous and Mental Disease, 179(8), 482--489.Google ScholarGoogle ScholarCross RefCross Ref
  52. C.D. Wilson, F. Reichsman, K. Mutch-Jones, A. Gardner, L. Marchi, S. Kowalski, T. Lord, and C. Dorsey (2018). Teacher Implementation and the Impact of Game-Based Science Curriculum Materials. Journal of Science Education and Technology, 27(4), 285--305.Google ScholarGoogle ScholarCross RefCross Ref
  53. M.J.P. Wolf (ed). 2008. The Video Game Explosion: A History from PONG to Playstation and Beyond. Greenwood Press.Google ScholarGoogle Scholar
  54. N. Yannier, K.R. Koedinger, and S.E. Hudson (2015). Learning from Mixed-Reality Games: Is Shaking a Tablet as Effective as Physical Observation?. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM, 1045--1054.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. L. Yao, J. Ou, C.Y. Cheng, H. Steiner, W. Wang, G. Wang, and H. Ishii (2015). biologic: Natto Cells as Nanoactuators for Shape Changing Interfaces. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM, 110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. L. Yao, J. Ou, G. Wang, C.Y. Cheng, W. Wang, H. Steiner, and H. Ishii (2015). bioPrint: A Liquid Deposition Printing System for Natural Actuators. 3D Printing and Additive Manufacturing, 2(4), 168179.Google ScholarGoogle Scholar
  57. S. Yoshikawa, T. Suzuki, M. Watanabe, and M. Iseki (2005). Kinetic Analysis of the Activation of Photoactivated Adenylyl Cyclase (PAC), a Blue-Light Receptor for Photomovements of Euglena. Photochemical & Photobiological Sciences, 4(9), 727--731.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Pac-Euglena: A Living Cellular Pac-Man Meets Virtual Ghosts

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format