skip to main content
survey

Random Graph Modeling: A Survey of the Concepts

Authors Info & Claims
Published:10 December 2019Publication History
Skip Abstract Section

Abstract

Random graph (RG) models play a central role in complex networks analysis. They help us to understand, control, and predict phenomena occurring, for instance, in social networks, biological networks, the Internet, and so on.

Despite a large number of RG models presented in the literature, there are few concepts underlying them. Instead of trying to classify a wide variety of very dispersed models, we capture and describe concepts they exploit considering preferential attachment, copying principle, hyperbolic geometry, recursively defined structure, edge switching, Monte Carlo sampling, and so on. We analyze RG models, extract their basic principles, and build a taxonomy of concepts they are based on. We also discuss how these concepts are combined in RG models and how they work in typical applications like benchmarks, null models, and data anonymization.

Skip Supplemental Material Section

Supplemental Material

References

  1. Emmanuel Abbe. 2017. Community detection and stochastic block models: Recent developments. J. Mach. Learn. Res. 18, 1 (2017), 6446--6531.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. William Aiello, Fan Chung, and Linyuan Lu. 2000. A random graph model for massive graphs. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing. Acm, 171--180.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Leman Akoglu and Christos Faloutsos. 2009. RTG: A recursive realistic graph generator using random typing. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 13--28.Google ScholarGoogle ScholarCross RefCross Ref
  4. Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 1 (2002), 47.Google ScholarGoogle ScholarCross RefCross Ref
  5. Vespignani Alessandro and Caldarelli Guido. 2007. Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science. Vol. 2. World Scientific.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Frédéric Amblard, Audren Bouadjio-Boulic, Carlos Sureda Gutiérrez, and Benoit Gaudou. 2015. Which models are used in social simulation to generate social networks? A review of 17 years of publications in JASSS. In Proceedings of the 2015 Winter Simulation Conference (WSC’15). IEEE, 4021--4032.Google ScholarGoogle ScholarCross RefCross Ref
  7. Weihua An. 2016. Fitting ERGMs on big networks. Soc. Sci. Res. 59 (2016), 107--119.Google ScholarGoogle ScholarCross RefCross Ref
  8. Alex Arenas, Albert Díaz-Guilera, and Conrad J Pérez-Vicente. 2006. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 11 (2006), 114102.Google ScholarGoogle ScholarCross RefCross Ref
  9. Chen Avin, Yuval Lando, and Zvi Lotker. 2010. Radio cover time in hyper-graphs. In Proceedings of the 6th International Workshop on Foundations of Mobile Computing. ACM, 3--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. 2007. Wherefore art thou r3579x?: Anonymized social networks, hidden patterns, and structural steganography. In Proceedings of the 16th International Conference on World Wide Web. ACM, 181--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Shweta Bansal, Shashank Khandelwal, and Lauren Ancel Meyers. 2009. Exploring biological network structure with clustered random networks. BMC Bioinform. 10, 1 (2009), 405.Google ScholarGoogle ScholarCross RefCross Ref
  12. Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random networks. Science 286, 5439 (1999), 509--512.Google ScholarGoogle Scholar
  13. Albert-László Barabási, Erzsebet Ravasz, and Tamas Vicsek. 2001. Deterministic scale-free networks. Physica A 299, 3-4 (2001), 559--564.Google ScholarGoogle ScholarCross RefCross Ref
  14. Alain Barrat, Marc Barthèlemy, and Alessandro Vespignani. 2008. Dynamical Processes on Complex Networks. Cambridge University Press. DOI:https://doi.org/10.1017/CBO9780511791383Google ScholarGoogle Scholar
  15. Marc Barthélemy, Alain Barrat, Romualdo Pastor-Satorras, and Alessandro Vespignani. 2005. Characterization and modeling of weighted networks. Physica A 346, 1--2 (2005), 34--43.Google ScholarGoogle ScholarCross RefCross Ref
  16. Edward A Bender and E Rodney Canfield. 1978. The asymptotic number of labeled graphs with given degree sequences. J. Combin. Theor. Ser. A 24, 3 (1978), 296--307.Google ScholarGoogle ScholarCross RefCross Ref
  17. Austin R. Benson, Carlos Riquelme, and Sven Schmit. 2014. Learning multifractal structure in large networks. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1326--1335.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Noam Berger, Christian Borgs, Jennifer T. Chayes, Raissa M. D’Souza, and Robert D. Kleinberg. 2004. Competition-induced preferential attachment. In Proceedings of the International Colloquium on Automata, Languages, and Programming. Springer, 208--221.Google ScholarGoogle Scholar
  19. M. M. Bernovskiy and N. N. Kuzyurin. 2012. Random graphs, models and generators of scale-free graphs. In Proceedings of the Institute for System Programming of the RAS 22 (2012).Google ScholarGoogle Scholar
  20. Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I. Del Genio, Jesús Gómez-Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massimiliano Zanin. 2014. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1 (2014), 1--122.Google ScholarGoogle ScholarCross RefCross Ref
  21. Béla Bollobás. 2001. Random Graphs. Number 73. Cambridge University Press.Google ScholarGoogle Scholar
  22. Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. 2003. Directed scale-free graphs. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 132--139.Google ScholarGoogle Scholar
  23. Béla Bollobás and Oliver M. Riordan. 2003. Mathematical results on scale-free random graphs. Handbook of Graphs and Networks: From the Genome to the Internet (2003), 1--34.Google ScholarGoogle Scholar
  24. Anthony Bonato. 2008. A Course on the Web Graph. Vol. 89. American Mathematical Soc.Google ScholarGoogle Scholar
  25. Anthony Bonato. 2009. A survey of properties and models of on-line social networks. In Proceedings of the 5th International Conference on Mathematical and Computational Models (ICMCM’09). Citeseer.Google ScholarGoogle Scholar
  26. Ilaria Bordino, Debora Donato, Aristides Gionis, and Stefano Leonardi. 2008. Mining large networks with subgraph counting. In Proceedings of the 2008 8th IEEE International Conference on Data Mining. IEEE, 737--742.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Karl Bringmann, Ralph Keusch, and Johannes Lengler. 2016. Geometric inhomogeneous random graphs. Theoretical Computer Science 760 (2016), 35--54.Google ScholarGoogle ScholarCross RefCross Ref
  28. Andries E. Brouwer and Willem H. Haemers. 2011. Spectra of Graphs. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  29. Guido Caldarelli. 2007. Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press.Google ScholarGoogle Scholar
  30. Deepayan Chakrabarti and Christos Faloutsos. 2006. Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38, 1 (2006), 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Deepayan Chakrabarti and Christos Faloutsos. 2012. Graph Mining: Laws, Tools, and Case Studies. Morgan 8 Claypool. http://dx.doi.org/10.2200/S00449ED1V01Y201209DMK006.Google ScholarGoogle Scholar
  32. Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A recursive model for graph mining. In Proceedings of the 2004 SIAM International Conference on Data Mining. SIAM, 442--446.Google ScholarGoogle ScholarCross RefCross Ref
  33. Fan Chung and Linyuan Lu. 2002. The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. U.S.A. 99, 25 (2002), 15879--15882.Google ScholarGoogle ScholarCross RefCross Ref
  34. Fan Chung and Linyuan Lu. 2002. Connected components in random graphs with given expected degree sequences. Ann. Combin. 6, 2 (2002), 125--145.Google ScholarGoogle ScholarCross RefCross Ref
  35. Kyrylo Chykhradze, Anton Korshunov, Nazar Buzun, Roman Pastukhov, Nikolay Kuzyurin, Denis Turdakov, and Hangkyu Kim. 2014. Distributed generation of billion-node social graphs with overlapping community structure. In Complex Networks V. Springer, 199--208.Google ScholarGoogle Scholar
  36. Ton Coolen, Alessia Annibale, and Ekaterina Roberts. 2017. Generating Random Networks and Graphs. Oxford University Press.Google ScholarGoogle Scholar
  37. L. da F. Costa, Francisco A. Rodrigues, Gonzalo Travieso, and Paulino Ribeiro Villas Boas. 2007. Characterization of complex networks: A survey of measurements. Adv. Phys. 56, 1 (2007), 167--242.Google ScholarGoogle ScholarCross RefCross Ref
  38. Jörn Davidsen, Holger Ebel, and Stefan Bornholdt. 2002. Emergence of a small world from local interactions: Modeling acquaintance networks. Phys. Rev. Lett. 88, 12 (2002), 128701.Google ScholarGoogle ScholarCross RefCross Ref
  39. Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. 2011. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E 84, 6 (2011), 066106.Google ScholarGoogle ScholarCross RefCross Ref
  40. Sergey N. Dorogovtsev, Alexander V. Goltsev, and José Ferreira F. Mendes. 2002. Pseudofractal scale-free web. Phys. Rev. E 65, 6 (2002), 066122.Google ScholarGoogle ScholarCross RefCross Ref
  41. Sergei N. Dorogovtsev and José F. F. Mendes. 2003. Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Mikhail Drobyshevskiy, Anton Korshunov, and Denis Turdakov. 2017. Learning and scaling directed networks via graph embedding. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 634--650.Google ScholarGoogle ScholarCross RefCross Ref
  43. Mikhail Drobyshevskiy, Denis Turdakov, and Sergey Kuznetsov. 2017. Reproducing network structure: A comparative study of random graph generators. In Proceedings of the Ivannikov ISPRAS Open Conference (ISPRAS’17). IEEE, 83--89.Google ScholarGoogle ScholarCross RefCross Ref
  44. Richard Durrett. 2007. Random Graph Dynamics. Vol. 200. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  45. Holger Ebel, Lutz-Ingo Mielsch, and Stefan Bornholdt. 2002. Scale-free topology of e-mail networks. Phys. Rev. E 66, 3 (2002), 035103.Google ScholarGoogle ScholarCross RefCross Ref
  46. Edward M. Lazzarin and Raj Jain. 2011. An overview of the analysis of online social networks. http://snap.stanford.edu/biodata.Google ScholarGoogle Scholar
  47. Nicole Eikmeier and David F. Gleich. 2017. Revisiting power-law distributions in spectra of real world networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 817--826.Google ScholarGoogle Scholar
  48. P. Erdős and A. Rényi. 1959. On random graphs I. Publ. Math. Debrec. 6 (1959), 290--297.Google ScholarGoogle Scholar
  49. Paul Erdős and Alfréd Rényi. 1960. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17--60.Google ScholarGoogle Scholar
  50. Alex Fabrikant, Elias Koutsoupias, and Christos H. Papadimitriou. 2002. Heuristically optimized trade-offs: A new paradigm for power laws in the Internet. In Proceedings of the International Colloquium on Automata, Languages, and Programming. Springer, 110--122.Google ScholarGoogle Scholar
  51. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law relationships of the internet topology. In ACM SIGCOMM Computer Communication Review, Vol. 29. ACM, 251--262.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zheng Fang, Jie Wang, Benyuan Liu, and Weibo Gong. 2012. Double Pareto lognormal distributions in complex networks. In Handbook of Optimization in Complex Networks. Springer, 55--80.Google ScholarGoogle Scholar
  53. András Faragó. 2009. Structural properties of random graph models. In Proceedings of the 15th Australasian Symposium on Computing: The Australasian Theory-Volume 94. Australian Computer Society, Inc., 131--138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Bailey K. Fosdick, Daniel B. Larremore, Joel Nishimura, and Johan Ugander. 2018. Configuring random graph models with fixed degree sequences. SIAM Rev. 60, 2 (2018), 315--355.Google ScholarGoogle ScholarCross RefCross Ref
  55. Tobias Friedrich and Anton Krohmer. 2018. On the diameter of hyperbolic random graphs. SIAM J. Discr. Math. 32, 2 (2018), 1314--1334.Google ScholarGoogle ScholarCross RefCross Ref
  56. Alan Frieze and Michał Karoński. 2015. Introduction to Random Graphs. Cambridge University Press.Google ScholarGoogle Scholar
  57. Edgar N. Gilbert. 1959. Random graphs. Ann. Math. Stat. 30, 4 (1959), 1141--1144.Google ScholarGoogle ScholarCross RefCross Ref
  58. G. N. Gilbert and L. Hamill. 2009. Social circles: A simple structure for agent-based social network models. J. Artif. Soc. Soc. Simul. 12, 2 (2009).Google ScholarGoogle Scholar
  59. Michelle Girvan and Mark E. J. Newman. 2002. Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 12 (2002), 7821--7826.Google ScholarGoogle ScholarCross RefCross Ref
  60. David F. Gleich and Art B. Owen. 2012. Moment-based estimation of stochastic Kronecker graph parameters. Internet Math. 8, 3 (2012), 232--256.Google ScholarGoogle ScholarCross RefCross Ref
  61. Anna Goldenberg, Alice X. Zheng, Stephen E. Fienberg, Edoardo M. Airoldi, et al. 2009. A survey of statistical network models. Found. Trends Mach. Learn. 2, 2 (2009), 129--233.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications, and performance: A survey. Knowl.-Based Syst. 151 (2018), 78--94.Google ScholarGoogle ScholarCross RefCross Ref
  63. Mark S. Granovetter. 1977. The strength of weak ties. In Social Networks. Elsevier, 347--367.Google ScholarGoogle Scholar
  64. Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. 2012. Random hyperbolic graphs: Degree sequence and clustering. In Proceedings of the International Colloquium on Automata, Languages, and Programming. Springer, 573--585.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Alexander Gutfraind, Ilya Safro, and Lauren Ancel Meyers. 2015. Multiscale network generation. In Proceedings of the 18th International Conference on Information Fusion (Fusion’15). IEEE, 158--165.Google ScholarGoogle Scholar
  66. Mark S. Handcock, Adrian E. Raftery, and Jeremy M. Tantrum. 2007. Model-based clustering for social networks. J. Roy. Stat. Soc.: Ser. A 170, 2 (2007), 301--354.Google ScholarGoogle ScholarCross RefCross Ref
  67. Jenine K. Harris. 2013. An Introduction to Exponential Random Graph Modeling. Vol. 173. Sage Publications.Google ScholarGoogle Scholar
  68. Lenwood S. Heath and Nidhi Parikh. 2011. Generating random graphs with tunable clustering coefficients. Physica A 390, 23--24 (2011), 4577--4587.Google ScholarGoogle ScholarCross RefCross Ref
  69. Javier Martın Hernández and Piet Van Mieghem. 2011. Classification of graph metrics. Delft University of Technology, Technical Report (2011), 1--8.Google ScholarGoogle Scholar
  70. Oleg U. Ivanov and Sergey O. Bartunov. 2015. Learning representations in directed networks. In Proceedings of the International Conference on Analysis of Images, Social Networks and Texts. Springer, 196--207.Google ScholarGoogle Scholar
  71. Svante Janson, Tomasz Łuczak, and Ilkka Norros. 2010. Large cliques in a power-law random graph. J. Appl. Probab. 47, 4 (2010), 1124--1135.Google ScholarGoogle ScholarCross RefCross Ref
  72. Ralph Keusch. 2018. Geometric Inhomogeneous Random Graphs and Graph Coloring Games. Ph.D. Dissertation. ETH Zurich.Google ScholarGoogle Scholar
  73. Marcos Kiwi and Dieter Mitsche. 2015. A bound for the diameter of random hyperbolic graphs. In Proceedings of the Meeting on Analytic Algorithmics and Combinatorics. Society for Industrial and Applied Mathematics, 26--39.Google ScholarGoogle ScholarCross RefCross Ref
  74. Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S. Tomkins. 1999. The web as a graph: Measurements, models, and methods. In Proceedings of the International Computing and Combinatorics Conference. Springer, 1--17.Google ScholarGoogle Scholar
  75. Eric D. Kolaczyk. 2009. Statistical Analysis of Network Data: Methods and Models (1st ed.). Springer Publishing Company, Incorporated.Google ScholarGoogle Scholar
  76. I. N. Kovalenko. 1971. Theory of random graphs. Cybernetics 7, 4 (1971), 575--579.Google ScholarGoogle ScholarCross RefCross Ref
  77. Pavel L. Krapivsky and Sidney Redner. 2005. Network growth by copying. Phys. Rev. E 71, 3 (2005), 036118.Google ScholarGoogle ScholarCross RefCross Ref
  78. Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná. 2010. Hyperbolic geometry of complex networks. Phys. Rev. E 82, 3 (2010), 036106.Google ScholarGoogle ScholarCross RefCross Ref
  79. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins, and Eli Upfal. 2000. Stochastic models for the web graph. In Proceedings ofthe 41st Annual Symposium on Foundations of Computer Science, 2000. IEEE, 57--65.Google ScholarGoogle ScholarCross RefCross Ref
  80. Jérôme Kunegis. 2013. Konect: The koblenz network collection. In Proceedings of the 22nd International Conference on World Wide Web. ACM, 1343--1350.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Jérôme Kunegis, Marcel Blattner, and Christine Moser. 2013. Preferential attachment in online networks: Measurement and explanations. In Proceedings of the 5th Annual ACM Web Science Conference. ACM, 205--214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Andrea Lancichinetti and Santo Fortunato. 2009. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80, 1 (2009), 016118.Google ScholarGoogle ScholarCross RefCross Ref
  83. Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 4 (2008), 046110.Google ScholarGoogle ScholarCross RefCross Ref
  84. Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos. 2005. Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery. Springer, 133--145.Google ScholarGoogle ScholarCross RefCross Ref
  85. Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. 2010. Kronecker graphs: An approach to modeling networks. J. Mach. Learn. Res. 11, (Feb. 2010), 985--1042.Google ScholarGoogle Scholar
  86. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1, 1 (2007), 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2008. Statistical properties of community structure in large social and information networks. In Proceedings of the 17th International Conference on World Wide Web. ACM, 695--704.Google ScholarGoogle Scholar
  88. László Lovász. 2012. Large Networks and Graph Limits. Vol. 60. American Mathematical Soc.Google ScholarGoogle Scholar
  89. Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. 2006. Systematic topology analysis and generation using degree correlations. In ACM SIGCOMM Computer Communication Review, Vol. 36. ACM, 135--146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Matteo Marsili, Fernando Vega-Redondo, and František Slanina. 2004. The rise and fall of a networked society: A formal model. Proc. Natl. Acad. Sci. U.S.A. 101, 6 (2004), 1439--1442.Google ScholarGoogle ScholarCross RefCross Ref
  91. Mary McGlohon, Leman Akoglu, and Christos Faloutsos. 2008. Weighted graphs and disconnected components: Patterns and a generator. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 524--532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Miller McPherson, Lynn Smith-Lovin, and James M. Cook. 2001. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 27, 1 (2001), 415--444.Google ScholarGoogle ScholarCross RefCross Ref
  93. Alberto Medina, Ibrahim Matta, and John Byers. 2000. On the origin of power laws in Internet topologies. ACM SIGCOMM Comput. Commun. Rev. 30, 2 (2000), 18--28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Ulrich Meyer, Manuel Penschuck, et al. 2017. Large-scale graph generation and big data: An overview on recent results. Bull. EATCS 2, 122 (2017).Google ScholarGoogle Scholar
  95. Ron Milo, Nadav Kashtan, Shalev Itzkovitz, Mark E. J. Newman, and Uri Alon. 2003. On the uniform generation of random graphs with prescribed degree sequences. arXiv preprint cond-mat/0312028 (2003).Google ScholarGoogle Scholar
  96. Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. 2002. Network motifs: Simple building blocks of complex networks. Science 298, 5594 (2002), 824--827.Google ScholarGoogle Scholar
  97. Roland Molontay. 2015. Fractal Characterization of Complex Networks. Ph.D. Dissertation. Department of Stochastics, Budapest University of Technology and Economics.Google ScholarGoogle Scholar
  98. Sebastian Moreno, Jennifer Neville, Sergey Kirshner, and SVN Vishwanathan. [n.d.]. Modeling the variance of network populations with mixed Kronecker product graph models. http://snap.stanford.edu/nipsgraphs2010.Google ScholarGoogle Scholar
  99. S. Moreno, P. Robles, and J. Neville. 2013. Block kronecker product graph model. In Workshop on Mining and Learning from Graphs.Google ScholarGoogle Scholar
  100. Mark Newman. 2010. Networks: An Introduction. Oxford University Press.Google ScholarGoogle ScholarCross RefCross Ref
  101. Mark Newman, Albert-Laszlo Barabasi, and Duncan J. Watts. 2006. The Structure and Dynamics of Networks. Princeton University Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Mark E. J. Newman. 2002. Assortative mixing in networks. Phys. Rev. Lett. 89, 20 (2002), 208701.Google ScholarGoogle ScholarCross RefCross Ref
  103. Mark E. J. Newman. 2003. The structure and function of complex networks. SIAM Rev. 45, 2 (2003), 167--256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Mark E. J. Newman. 2004. Analysis of weighted networks. Phys. Rev. E 70, 5 (2004), 056131.Google ScholarGoogle ScholarCross RefCross Ref
  105. Mark E. J. Newman. 2006. Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103, 23 (2006), 8577--8582.Google ScholarGoogle ScholarCross RefCross Ref
  106. Christine Leigh Myers Nickel. 2006. Random Dot Product Graphs a Model for Social Networks. Ph.D. Dissertation. The Johns Hopkins University.Google ScholarGoogle Scholar
  107. Furuzan Atay Onat, Ivan Stojmenovic, and Halim Yanikomeroglu. 2008. Generating random graphs for the simulation of wireless ad hoc, actuator, sensor, and internet networks. Perv. Mobile Comput. 4, 5 (2008), 597--615.Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Gergely Palla, László Lovász, and Tamás Vicsek. 2010. Multifractal network generator. Proc. Natl. Acad. Sci. U.S.A. (2010).Google ScholarGoogle ScholarCross RefCross Ref
  109. Himchan Park and Min-Soo Kim. 2017. TrillionG: A trillion-scale synthetic graph generator using a recursive vector model. In Proceedings of the 2017 ACM International Conference on Management of Data. ACM, 913--928.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Mathew Penrose. 2003. Random Geometric Graphs. Number 5. Oxford University Press.Google ScholarGoogle Scholar
  111. L. Pofsneck, Henning Hofmann, and Ricardo Buettner. 2012. Physical theories of the evolution of online social networks: A discussion impulse. Dynam. Syst. 22 (2012), 4.Google ScholarGoogle Scholar
  112. Alex Pothen, Horst D. Simon, and Kang-Pu Liou. 1990. Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 3 (1990), 430--452.Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Raigorodsky. 2011. Models of Random Graphs. Litres.Google ScholarGoogle Scholar
  114. Erzsébet Ravasz and Albert-László Barabási. 2003. Hierarchical organization in complex networks. Phys. Rev. E 67, 2 (2003), 026112.Google ScholarGoogle ScholarCross RefCross Ref
  115. Hernán D. Rozenfeld, Shlomo Havlin, and Daniel Ben-Avraham. 2007. Fractal and transfractal recursive scale-free nets. New J. Phys. 9, 6 (2007), 175.Google ScholarGoogle ScholarCross RefCross Ref
  116. Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng, and Ben Y. Zhao. 2010. Measurement-calibrated graph models for social network experiments. In Proceedings of the 19th International Conference on World Wide Web. ACM, 861--870.Google ScholarGoogle Scholar
  117. Erin N. Sawardecker, Marta Sales-Pardo, and Luıs A. Nunes Amaral. 2009. Detection of node group membership in networks with group overlap. Eur. Phys. J. B 67, 3 (2009), 277--284.Google ScholarGoogle ScholarCross RefCross Ref
  118. Comandur Seshadhri, Tamara G. Kolda, and Ali Pinar. 2012. Community structure and scale-free collections of Erdős-Rényi graphs. Phys. Rev. E 85, 5 (2012), 056109.Google ScholarGoogle ScholarCross RefCross Ref
  119. Comandur Seshadhri, Ali Pinar, and Tamara G. Kolda. 2011. An in-depth study of stochastic Kronecker graphs. In Proceedings of the IEEE 11th International Conference on Data Mining (ICDM’11). IEEE, 587--596.Google ScholarGoogle Scholar
  120. Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos Faloutsos, and Jure Leskove. 2008. Mobile call graphs: Beyond power-law and lognormal distributions. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 596--604.Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Christian L. Staudt, Michael Hamann, Ilya Safro, Alexander Gutfraind, and Henning Meyerhenke. 2016. Generating scaled replicas of real-world complex networks. In Proceedings of the International Workshop on Complex Networks and Their Applications. Springer, Cham, 17--28.Google ScholarGoogle Scholar
  122. Lionel Tabourier, Camille Roth, and Jean-Philippe Cointet. 2011. Generating constrained random graphs using multiple edge switches. J. Exp. Algor. 16 (2011), 1--7.Google ScholarGoogle Scholar
  123. Richard Taylor. 1981. Constrained switchings in graphs. In Combinatorial Mathematics VIII. Springer, 314--336.Google ScholarGoogle Scholar
  124. Riitta Toivonen, Lauri Kovanen, Mikko Kivelä, Jukka-Pekka Onnela, Jari Saramäki, and Kimmo Kaski. 2009. A comparative study of social network models: Network evolution models and nodal attribute models. Soc. Netw. 31, 4 (2009), 240--254.Google ScholarGoogle ScholarCross RefCross Ref
  125. Riitta Toivonen, Jukka-Pekka Onnela, Jari Saramäki, Jörkki Hyvönen, and Kimmo Kaski. 2006. A model for social networks. Physica A 371, 2 (2006), 851--860.Google ScholarGoogle ScholarCross RefCross Ref
  126. Remco Van Der Hofstad. 2014. Random Graphs and Complex Networks. Cambridge University press.Google ScholarGoogle Scholar
  127. Marijtje A. J. Van Duijn, Krista J. Gile, and Mark S. Handcock. 2009. A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models. Soc. Netw. 31, 1 (2009), 52--62.Google ScholarGoogle ScholarCross RefCross Ref
  128. Piet Van Mieghem, Jasmina Omic, and Robert Kooij. 2009. Virus spread in networks. IEEE/ACM Trans. Netw. 17, 1 (2009), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Alexei Vázquez. 2003. Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67, 5 (2003), 056104.Google ScholarGoogle ScholarCross RefCross Ref
  130. Venkat Venkatasubramanian, Santhoji Katare, Priyan R. Patkar, and Fang-ping Mu. 2004. Spontaneous emergence of complex optimal networks through evolutionary adaptation. Comput. Chem. Eng. 28, 9 (2004), 1789--1798.Google ScholarGoogle ScholarCross RefCross Ref
  131. Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ’small-world’ networks. Nature 393, 6684 (1998), 440.Google ScholarGoogle Scholar
  132. Bernard M. Waxman. 1988. Routing of multipoint connections. IEEE J. Select. Areas Commun. 6, 9 (1988), 1617--1622.Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Anatol Wegner. 2011. Random Graphs with Motifs. https://www.mis.mpg.de/preprints/2011/preprint2011_61.pdf.Google ScholarGoogle Scholar
  134. Ling Heng Wong, Philippa Pattison, and Garry Robins. 2006. A spatial model for social networks. Physica A 360, 1 (2006), 99--120.Google ScholarGoogle ScholarCross RefCross Ref
  135. Lifeng Xi, Lihong Wang, Songjing Wang, Zhouyu Yu, and Qin Wang. 2017. Fractality and scale-free effect of a class of self-similar networks. Physica A 478 (2017), 31--40.Google ScholarGoogle ScholarCross RefCross Ref
  136. Jaewon Yang and Jure Leskovec. 2014. Structure and overlaps of ground-truth communities in networks. ACM Trans. Intell. Syst. Technol. 5, 2 (2014), 26.Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42, 1 (2015), 181--213.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Xiaowei Ying and Xintao Wu. 2009. Graph generation with prescribed feature constraints. In Proceedings of the 2009 SIAM International Conference on Data Mining. SIAM, 966--977.Google ScholarGoogle ScholarCross RefCross Ref
  139. Soon-Hyung Yook, Hawoong Jeong, and Albert-László Barabási. 2002. Modeling the Internet’s large-scale topology. Proc. Natl. Acad. Sci. U.S.A. 99, 21 (2002), 13382--13386.Google ScholarGoogle ScholarCross RefCross Ref
  140. J. W. Zhang and Y. C. Tay. 2016. GSCALER: Synthetically scaling a given graph. In Proceedings of the International Conference on Extending Database Technology (EDBT’16). 53--64.Google ScholarGoogle Scholar

Index Terms

  1. Random Graph Modeling: A Survey of the Concepts

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 52, Issue 6
      November 2020
      806 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/3368196
      • Editor:
      • Sartaj Sahni
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 December 2019
      • Accepted: 1 October 2019
      • Revised: 1 July 2019
      • Received: 1 October 2018
      Published in csur Volume 52, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • survey
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format