skip to main content
10.1145/566570.566650acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Stylization and abstraction of photographs

Published:01 July 2002Publication History

ABSTRACT

Good information design depends on clarifying the meaningful structure in an image. We describe a computational approach to stylizing and abstracting photographs that explicitly responds to this design goal. Our system transforms images into a line-drawing style using bold edges and large regions of constant color. To do this, it represents images as a hierarchical structure of parts and boundaries computed using state-of-the-art computer vision. Our system identifies the meaningful elements of this structure using a model of human perception and a record of a user's eye movements in looking at the photo; the system renders a new image using transformations that preserve and highlight these visual elements. Our method thus represents a new alternative for non-photorealistic rendering both in its visual style, in its approach to visual form, and in its techniques for interaction.

References

  1. AGRAWALA, M., AND STOLTE, C. 2001. Rendering effective route maps: improving usability through generalization. In Proc. of ACM SIGGRAPH 2001, 241-249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. AHUJA, N. 1996. A transform for multiscale image segmentation by integrated edge and region detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 18, 12, 1211-1235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. BURT, P., AND ADELSON, E. 1983. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications 31, 4, 532-540.Google ScholarGoogle ScholarCross RefCross Ref
  4. CAMPBELL, F., AND ROBSON, J. 1968. Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197, 551-566.Google ScholarGoogle ScholarCross RefCross Ref
  5. CHRISTOUDIAS, C., GEORGESCU, B., AND MEER, P. 2002. Synergism in low level vision. In Proc. ICPR 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. COMANICIU, D., AND MEER, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. CURTIS, C. 1999. Non-photorealistic animation. In ACM SIGGRAPH 1999 Course Notes #17 (Section 9).Google ScholarGoogle Scholar
  8. DEUSSEN, O., AND STROTHOTTE, T. 2000. Computer-generated pen-and-ink illustration of trees. In Proc. of ACM SIGGRAPH 2000, 13-18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. DUCHOWSKI, A., AND VERTEGAAL, R. 2000. Eye-based interaction in graphical systems: Theory and practice. In ACM SIGGRAPH 2000 Course Notes #5.Google ScholarGoogle Scholar
  10. DUCHOWSKI, A. 2000. Acuity-matching resolution degradation through wavelet coefficient scaling. IEEE Trans. on Image Processing 9, 8 (Aug.), 1437-1440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. DURAND, F., OSTROMOUKHOV, V., MILLER, M., DURANLEAU, F., AND DORSEY, J. 2001. Decoupling strokes and high-level attributes for interactive traditional drawing. In Proceedings of the 12th Eurographics Workshop on Rendering, 71-82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. FINKELSTEIN, A., AND SALESIN, D. 1994. Multiresolution curves. In Proc. of ACM SIGGRAPH 94, 261-268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. FOLEY, J., VAN DAM, A., FEINER, S., AND HUGHES, J. 1997. Computer Graphics: Principles and Practice, 2nd edition. Addison Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Rendering. A K Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. GOOCH, A. A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A non-photorealistic lighting model for automatic technical illustration. In Proc. of ACM SIGGRAPH 98, 447-452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. HAEBERLI, P. 1990. Paint by numbers: Abstract image representations. In Proc. of ACM SIGGRAPH 90, 207-214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. HANDFORD, M. 1987. Where's Waldo? Little, Brown and Company.Google ScholarGoogle Scholar
  18. HENDERSON, J. M., AND HOLLINGWORTH, A. 1998. Eye movements during scene viewing: An overview. In Eye Guidance in Reading and Scene Perception, G. Underwood, Ed. Elsevier Science Ltd., 269-293.Google ScholarGoogle Scholar
  19. HERMAN, I., AND DUKE, D. 2001. Minimal graphics. IEEE Computer Graphics and Applications 21, 6, 18-21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. In Proc. of ACM SIGGRAPH 2000, 517-526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. HERTZMANN, A. 1998. Painterly rendering with curved brush strokes of multiple sizes. In Proc. of ACM SIGGRAPH 98, 453-460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. HERTZMANN, A. 2001. Paint by relaxation. In Computer Graphics International, 47-54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. HOFFMAN, D. D. 1998. Visual intelligence: how we create what we see. Norton.Google ScholarGoogle Scholar
  24. JUST, M. A., AND CARPENTER, P. A. 1976. Eye fixations and cognitive processes. Cognitive Psychology 8, 441-480.Google ScholarGoogle ScholarCross RefCross Ref
  25. KELLY, D. 1984. Retinal inhomogenity: I. spatiotemporal contrast sensitivity. Journal of the Optical Society of America A 74, 1, 107-113.Google ScholarGoogle ScholarCross RefCross Ref
  26. KOENDERINK, J. J., M. A. BOUMAN, A. B. D. M., AND SLAPPENDEL, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. II. the far peripheral visual field (eccentricity 0-50). Journal of the Optical Society of America A 68, 6, 850-854.Google ScholarGoogle ScholarCross RefCross Ref
  27. KOENDERINK, J. J. 1984. The structure of images. Biological Cybernetics 50, 363-370.Google ScholarGoogle ScholarCross RefCross Ref
  28. KOENDERINK, J. J. 1984. What does the occluding contour tell us about solid shape? Perception 13, 321-330.Google ScholarGoogle ScholarCross RefCross Ref
  29. KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L., BARZEL, R., HOLDEN, L. S., AND HUGHES, J. 1999. Art-based rendering of fur, grass, and trees. In Proc. of ACM SIGGRAPH 99, 433-438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. LEYTON, M. 1992. Symmetry, causality, mind. MIT Press.Google ScholarGoogle Scholar
  31. LINDEBERG, T. 1994. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. LITWINOWICZ, P. 1997. Processing images and video for an impressionist effect. In Proc. of ACM SIGGRAPH 97, 407-414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. MACKWORTH, N., AND MORANDI, A. 1967. The gaze selects informative details within pictures. Perception and Psychophysics 2, 547-552.Google ScholarGoogle ScholarCross RefCross Ref
  34. MANNOS, J. L., AND SAKRISON, D. J. 1974. The effects of a visual fidelity criterion on the encoding of images. IEEE Trans. on Information Theory 20, 4, 525-536.Google ScholarGoogle ScholarCross RefCross Ref
  35. MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D., GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotorealistic rendering. In Proc. of ACM SIGGRAPH 97, 415-420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. MARR, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, San Francisco. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. MEER, P., AND GEORGESCU, B. 2001. Edge detection with embedded confidence. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 12, 1351-1365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. PATTANAIK, S. N., FERWERDA, J. A., FAIRCHILD, M. D., AND GREENBERG, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. of ACM SIGGRAPH 98, 287-298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. REDDY, M. 2001. Perceptually optimized 3D graphics. IEEE Computer Graphics and Applications 21, 5 (September/October), 68-75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. REGAN, D. 2000. Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion and Binocular Disparity. Sinauer.Google ScholarGoogle Scholar
  41. ROVAMO, J., AND VIRSU, V. 1979. An estimation and application of the human cortical magnification factor. Experimental Brain Research 37, 495-510.Google ScholarGoogle ScholarCross RefCross Ref
  42. SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering of 3-D shapes. In Proc. of ACM SlGGRAPH 90, 197-206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. SANTELLA, A., AND DECARLO, D. 2002. Abstracted painterly renderings using eye-tracking data. In Proc. of the Second International Symp. on Non-photorealistic Animation and Rendering (NPAR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. SHIRAISHI, M., AND YAMAGUCHI, Y. 2000. An algorithm for automatic painterly rendering based on local source image approximation. In Proc. of the First International Symp. on Non-photorealistic Animation and Rendering (NPAR), 53-58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. SIBERT, L. E., AND JACOB, R. J. K. 2000. Evaluation of eye gaze interaction. In Proc. CHI 2000, 281-288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. TRUCCO, E., AND VERRI, A. 1998. Introductory Techniques for 3-D Computer Vision. Prentice-Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. TUFTE, E. R. 1990. Envisioning Information. Graphics Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. VERTEGAAL, R. 1999. The gaze groupware system: Mediating joint attention in mutiparty communication and collaboration. In Proc. CHI '99, 294-301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-generated pen-and-ink illustration. In Proc. of ACM SIGGRAPH 94, 91-100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. YARBUS, A. L. 1967. Eye Movements and Vision. Plenum Press.Google ScholarGoogle Scholar
  51. ZEKI, S. 1999. Inner Vision: An Exploration of Art and the Brain. Oxford Univ. Press.Google ScholarGoogle Scholar

Index Terms

  1. Stylization and abstraction of photographs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGGRAPH '02: Proceedings of the 29th annual conference on Computer graphics and interactive techniques
          July 2002
          574 pages
          ISBN:1581135211
          DOI:10.1145/566570

          Copyright © 2002 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2002

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          SIGGRAPH '02 Paper Acceptance Rate67of358submissions,19%Overall Acceptance Rate1,822of8,601submissions,21%

          Upcoming Conference

          SIGGRAPH '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader