skip to main content
research-article

Supercharging recommender systems using taxonomies for learning user purchase behavior

Published:01 June 2012Publication History
Skip Abstract Section

Abstract

Recommender systems based on latent factor models have been effectively used for understanding user interests and predicting future actions. Such models work by projecting the users and items into a smaller dimensional space, thereby clustering similar users and items together and subsequently compute similarity between unknown user-item pairs. When user-item interactions are sparse (sparsity problem) or when new items continuously appear (cold start problem), these models perform poorly. In this paper, we exploit the combination of taxonomies and latent factor models to mitigate these issues and improve recommendation accuracy. We observe that taxonomies provide structure similar to that of a latent factor model: namely, it imposes human-labeled categories (clusters) over items. This leads to our proposed taxonomy-aware latent factor model (TF) which combines taxonomies and latent factors using additive models. We develop efficient algorithms to train the TF models, which scales to large number of users/items and develop scalable inference/recommendation algorithms by exploiting the structure of the taxonomy. In addition, we extend the TF model to account for the temporal dynamics of user interests using high-order Markov chains. To deal with large-scale data, we develop a parallel multi-core implementation of our TF model. We empirically evaluate the TF model for the task of predicting user purchases using a real-world shopping dataset spanning more than a million users and products. Our experiments demonstrate the benefits of using our TF models over existing approaches, in terms of both prediction accuracy and running time.

References

  1. Boost c++ libraries. http://www.boost.org/.Google ScholarGoogle Scholar
  2. Kdd cup 2011. http://kddcup.yahoo.com/.Google ScholarGoogle Scholar
  3. Pricegrabber. http://www.pricegrabber.com/.Google ScholarGoogle Scholar
  4. D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD, pages 19--28, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487--499, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, pages 3--14, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Ahmed, Y. Low, M. Aly, V. Josifovski, and A. J. Smola. Scalable distributed inference of dynamic user interests for behavioral targeting. In KDD, pages 114--122, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Bennett and S. Lanning. The netflix prize. In In KDD Cup and Workshop in conjunction with KDD, 2007.Google ScholarGoogle Scholar
  9. L. Bottou. Stochastic learning. In Advanced Lectures on Machine Learning, pages 146--168, 2003.Google ScholarGoogle Scholar
  10. L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, 2007.Google ScholarGoogle Scholar
  11. L. Bottou and Y. LeCun. Large scale online learning. In NIPS, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC Texts in Statistical Science, 2003.Google ScholarGoogle Scholar
  13. A. Y. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2): 8--12, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov., 15(1): 55--86, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. I. Jordan. Learning in Graphical Models (ed). MIT Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In RecSys, pages 165--172, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD, pages 426--434, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Koren. Collaborative filtering with temporal dynamics. In KDD, pages 447--456, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Koren and R. M. Bell. Advances in collaborative filtering. In Recommender Systems Handbook, pages 145--186. 2011.Google ScholarGoogle ScholarCross RefCross Ref
  20. Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8): 30--37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. K. Menon, K. P. Chitrapura, S. Garg, D. Agarwal, and N. Kota. Response prediction using collaborative filtering with hierarchies and side-information. In KDD, pages 141--149, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Mnih. Taxonomy-informed latent factor models for implicit feedback. In KDD Cup and Workshop, KDD 2011, 2011.Google ScholarGoogle Scholar
  23. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-thieme. L. S.: Bpr: Bayesian personalized ranking from implicit feedback. In UAI, pages 452--461, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. In WWW, pages 811--820, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In WSDM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Srikant and R. Agrawal. Mining generalized association rules. In VLDB, pages 407--419, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. van der Maaten. Learning a parametric embedding by preserving local structure. JMLR, 5: 384--391, 2009.Google ScholarGoogle Scholar
  29. L.-T. Weng, Y. Xu, Y. Li, and R. Nayak. Exploiting item taxonomy for solving cold-start problem in recommendation making. In ICTAI, pages 113--120, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C.-N. Ziegler, G. Lausen, and L. Schmidt-Thieme. Taxonomy-driven computation of product recommendations. In CIKM, pages 406--415, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 5, Issue 10
    June 2012
    180 pages

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 June 2012
    Published in pvldb Volume 5, Issue 10

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader