skip to main content
research-article

Functional maps: a flexible representation of maps between shapes

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a novel representation of maps between pairs of shapes that allows for efficient inference and manipulation. Key to our approach is a generalization of the notion of map that puts in correspondence real-valued functions rather than points on the shapes. By choosing a multi-scale basis for the function space on each shape, such as the eigenfunctions of its Laplace-Beltrami operator, we obtain a representation of a map that is very compact, yet fully suitable for global inference. Perhaps more remarkably, most natural constraints on a map, such as descriptor preservation, landmark correspondences, part preservation and operator commutativity become linear in this formulation. Moreover, the representation naturally supports certain algebraic operations such as map sum, difference and composition, and enables a number of applications, such as function or annotation transfer without establishing point-to-point correspondences. We exploit these properties to devise an efficient shape matching method, at the core of which is a single linear solve. The new method achieves state-of-the-art results on an isometric shape matching benchmark. We also show how this representation can be used to improve the quality of maps produced by existing shape matching methods, and illustrate its usefulness in segmentation transfer and joint analysis of shape collections.

Skip Supplemental Material Section

Supplemental Material

tp101_12.mp4

mp4

29.2 MB

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. SCAPE: Shape completion and animation of people. In Proc. SIGGRAPH, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aubry, M., Schlickewei, U., and Cremers, D. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proc. ICCV - 4DMOD Workshop.Google ScholarGoogle Scholar
  3. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE TPAMI 14, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. PNAS 103, 5, 1168--1172.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bronstein, A., Bronstein, M., and Kimmel, R. 2008. Numerical Geometry of Non-Rigid Shapes. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Çela, E. 1998. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic Publishers.Google ScholarGoogle Scholar
  7. Dubrovina, A., and Kimmel, R. 2011. Approximately isometric shape correspondence by matching pointwise spectral features and global geodesic structures. Advances in Adaptive Data Analysis, 203--228.Google ScholarGoogle Scholar
  8. Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Computers and Graphics (Proc. SMI) 33, 3, 262--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Non-rigid registration under isometric deformations. CGF (Proc. SGP) 27, 5, 1449--1457. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. ACM TOG (Proc. SIGGRAPH Asia) 30, 6, 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jain, V., Zhang, H., and van Kaick, O. 2007. Non-rigid spectral correspondence of triangle meshes. International Journal on Shape Modeling 13, 1, 101--124.Google ScholarGoogle ScholarCross RefCross Ref
  12. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D Mesh Segmentation and Labeling. ACM Transactions on Graphics 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kato, T. 1995. Perturbation Theory for Linear Operators. Springer-Verlag GmbH.Google ScholarGoogle Scholar
  14. Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. In Proc. SIGGRAPH, 79:1--79:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kin-Chung Au, O., Tai, C.-L., Cohen-Or, D., Zheng, Y., and Fu, H. 2010. Electors voting for fast automatic shape correspondence. Computer Graphics Forum 29, 2, 645--654.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lipman, Y., and Funkhouser, T. 2009. Möbius voting for surface correspondence. In Proc. SIGGRAPH, 72:1--72:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mateus, D., Horaud, R. P., Knossow, D., Cuzzolin, F., and Boyer, E. 2008. Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In Proc. CVPR, 1--8.Google ScholarGoogle Scholar
  18. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. In Proc. VisMath, 35--57.Google ScholarGoogle Scholar
  19. Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., and Guibas, L. 2011. An optimization approach to improving collections of shape maps. In Proc. SGP, 1481--1491.Google ScholarGoogle Scholar
  20. Ovsjanikov, M., Sun, J., and Guibas, L. 2008. Global intrinsic symmetries of shapes. Comp. Graph. Forum 27, 5, 1341--1348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ovsjanikov, M., Merigot, Q., Memoli, F., and Guibas, L. 2010. One point isometric matching with the heat kernel. CGF 29, 5, 1555--1564.Google ScholarGoogle ScholarCross RefCross Ref
  22. Pokrass, J., Bronstein, A. M., and Bronstein, M. M. 2011. A correspondence-less approach to matching of de-formable shapes. In SSVM, 592--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rustamov, R. M. 2007. Laplace-beltrami eigenfunctions for deformation invariant shape representation. In Proc. SGP, 225--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sahillioglu, Y., and Yemez, Y. 2011. Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Computer Graphics Forum 30, 5, 1461--1470.Google ScholarGoogle ScholarCross RefCross Ref
  25. Sharma, A., and Horaud, R. P. 2010. Shape matching based on diffusion embedding and on mutual isometric consistency. In Proc. CVPR -- NORDIA Workshop, 29--36.Google ScholarGoogle Scholar
  26. Singer, A., and Wu, H. 2011. Vector diffusion maps and the connection laplacian. Arxiv preprint arXiv:1102.0075.Google ScholarGoogle Scholar
  27. Skraba, P., Ovsjanikov, M., Chazal, F., and Guibas, L. 2010. Persistence-based segmentation of deformable shapes. In Proc. CVPR -- NORDIA Workshop, 45--52.Google ScholarGoogle Scholar
  28. Sun, J., Ovsjanikov, M., and Guibas, L. 2009. A concise and provably informative multi-scale signature based on heat diffusion. In Proc. SGP, 1383--1392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tevs, A., Berner, A., Wand, M., Ihrke, I., and Seidel, H.-P. 2011. Intrinsic shape matching by planned landmark sampling. CGF (Proc. Eurographics) 30, 2, 543--552.Google ScholarGoogle ScholarCross RefCross Ref
  30. van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., and Hamarneh, G. 2011. Prior knowledge for part correspondence. CGF (Proc. Eurographics) 30, 2, 553--562.Google ScholarGoogle ScholarCross RefCross Ref
  31. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2011. A survey on shape correspondence. Computer Graphics Forum 30, 6, 1681--1707.Google ScholarGoogle ScholarCross RefCross Ref
  32. Weyl, H. 1946. The Classical Groups: Their Invariants and Representations. Princeton University Press.Google ScholarGoogle Scholar
  33. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z. 2010. Style-content separation by anisotropic part scales. ACM TOG (Proc. SIGGRAPH Asia) 29, 5, 184:1--184:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yeh, I.-C., Lin, C.-H., Sorkine, O., and Lee, T.-Y. 2010. Template-based 3d model fitting using dual-domain relaxation. IEEE Transactions on Visualization and Computer Graphics 99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zhang, H., Sheffer, A., Cohen-Or, Zhou, Q., van Kaick, O., and Tagliasacchi, A. 2008. Deformation-driven shape correspondence. In Proc. SGP, 1431--1439. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 4
    July 2012
    935 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2185520
    Issue’s Table of Contents

    Copyright © 2012 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 July 2012
    Published in tog Volume 31, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader