skip to main content
research-article

Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

Authors Info & Claims
Published:29 December 2015Publication History
Skip Abstract Section

Abstract

Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this article, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.

Skip Supplemental Material Section

Supplemental Material

References

  1. 3DSystems. 2014. Projet 860Pro. http://www.3dsystems.com/3dprinters/professional/projet-860pro.Google ScholarGoogle Scholar
  2. A. Agar and J. Allebach. 2005. Model-based color halftoning using direct binary search. IEEE Trans. on Image Proc. 14, 12, 1945--1959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Alexa and J. Kyprianidis. 2015. Error diffusion on meshes. Computers and Graphics (Proc. SMI 2014) 46, 336--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Arikan, A. Brunton, T. Tanksale, and P. Urban. 2015. Color-managed 3D-printing with highly translucent printing materials. In Proceedings of the SPIE/IS&T Electronic Imaging Conference. San Francisco.Google ScholarGoogle Scholar
  5. B. E. Bayer. 1973. An optimum method for two-level rendition of continuous-tone pictures. In Proceedings of the IEEE Intl. Conf. on Comm. Seattle, WA, 11--15.Google ScholarGoogle Scholar
  6. F. Campbell, J. Kulikowski, and J. Levinson. 1966. The effect of orientation on the visual resolution of gratings. The Journal of Physiology 187, 2, 427--436.Google ScholarGoogle ScholarCross RefCross Ref
  7. S. Chandrasekhar. 1960. Radiative transfer. Courier Dover Publications.Google ScholarGoogle Scholar
  8. J. Chang, B. Alain, and V. Ostromoukhov. 2009. Structure-aware error diffusion. ACM TOG (Proc. SIGGRAPH Asia) 28, 5, 162:1--162:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Chang and J. Allebach. 2003. Memory efficient error diffusion. IEEE Trans. on Image Proc. 12, 11, 1352--1366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Chen, D. Levin, P. Didyk, P. Sitthi-Armorn, and W. Matusik. 2013. Spec2fab: A reducer-tuner model for translating specifications to 3D prints. ACM TOG (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. Cho, E. Sachs, N. M. Patrikalakis, and D. E. Troxel. 2003. A dithering algorithm for local composition control with three-dimensional printing. CAD 35, 9, 851--867.Google ScholarGoogle ScholarCross RefCross Ref
  12. CIE Publication No. 142. 2001. Improvement to industrial colour-difference evaluation. Tech. rep., Central Bureau of the CIE, Vienna, Austria.Google ScholarGoogle Scholar
  13. CIE Publication No. 159. 2004. A colour appearance model for colour management systems: CIECAM02. CIE Central Bureau, Vienna, Austria.Google ScholarGoogle Scholar
  14. P. Cignoni, E. Gobbetti, R. Pintus, and R. Scopigno. 2008. Color enhancement for rapid prototyping. In Proceedings of VAST. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. Demichel. 1924. Le procédé. 26, 3, 17--21, 26--27.Google ScholarGoogle Scholar
  16. Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Doubrovski, E. Tsai, D. Dikovsky, J. Geraedts, H. Herr, and N. Oxman. 2015. Voxel-based fabrication through material property mapping: A design method for bitmap printing. CAD 60, 3--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Eschbach and K. Knox. 1991. Error-diffusion algorithm with edge enhancement. JOSA A 8, 12, 1844--1850.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. D. Fairchild. 2013. Color Appearance Models, 3 ed. John Wiley & Sons, Inc., West Sussex, England.Google ScholarGoogle Scholar
  20. P. Felzenzwalb and D. Huttenlocher. 2004. Distance transforms of sampled functions. Tech. rep., Cornell University.Google ScholarGoogle Scholar
  21. R. Floyd and L. Steinberg. 1976. An adaptive algorithm for spatial grey scale. Proc. of the Soc. of Info. Display 17, 1.Google ScholarGoogle Scholar
  22. M. Hašan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Hergel and S. Lefebvre. 2014. Clean color: Improving multifilament 3D prints. CGF (Proc. Eurographics) 33, 2, 469--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. ICC. 2010. File Format for Color Profiles, 4.3.0.0 ed. http://www.color.org.Google ScholarGoogle Scholar
  25. G. Johnson and M. Fairchild. 2003. A top down description of SCIELAB and CIEDE2000. Color Research and Application 28, 6, 425--435.Google ScholarGoogle ScholarCross RefCross Ref
  26. Y. Lan, Y. Dong, F. Pellacini, and X. Tong. 2013. Bi-scale appearance fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Lau, G. Arce, and N. Gallagher. 1999. Digital halftoning by means of green-noise masks. JOSA A 16, 7, 1575--1586.Google ScholarGoogle ScholarCross RefCross Ref
  28. D. L. Lau and G. R. Arce. 2001. Modern Digital Halftoning. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Levin, D. Glasner, Y. Xiong, F. Durand, W. Freeman, W. Matusik, and T. Zickler. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM TOG (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Li and J. Allebach. 2004. Tone-dependent error diffusion. IEEE Trans. on Image Proc. 13, 2, 201--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Q. Lou and P. Stucki. 1998. Fundamentals of 3D halftoning. LNCS (Proc. Elect. Pub. and Art. Imag.) 1375, 224--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. MCor Technologies. 2014. MCor Iris. http://mcortechnologies.com/3d-printers/iris/.Google ScholarGoogle Scholar
  33. T. Mitsa and K. Parker. 1992. Digital halftoning technique using a blue-noise mask. JOSA A 9, 11, 1920--1929.Google ScholarGoogle ScholarCross RefCross Ref
  34. J. Morovič. 2008. Color Gamut Mapping. John Wiley & Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K. T. Mullen. 1985. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. The Journal of Physiology 359, 1, 381.Google ScholarGoogle ScholarCross RefCross Ref
  36. V. Ostromoukhov. 2001. A simple and efficient error-diffusion algorithm. In Proceedings of SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. W.-M. Pang, Y. Qu, T.-T. Wong, D. Cohen-Or, and P. Heng. 2008. Structure-aware halftoning. ACM TOG (Proc. SIGGRAPH) 27, 3, 89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. T. Reiner, N. Carr, R. Mech, O. Stava, C. Dachsbacher, and G. Miller. 2014. Dual-color mixing for fused deposition modeling printers. CGF (Proc. Eurographics) 33, 2, 479--486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. G. L. Rogers. 1997. Optical dot gain in a halftone print. JIST 41, 643--656.Google ScholarGoogle Scholar
  40. Scanlab and Turbosquid. 2013. http://www.turbosquid.com/FullPreview/Index.cfm/ID/777450.Google ScholarGoogle Scholar
  41. R. Schmidt, C. Grimm, and B. Wyvill. 2006. Interactive decal compositing with discrete exponential maps. ACM TOG (Proc. SIGGRAPH) 25, 3, 605--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Stratasys. 2014. Objet500 Connex3. http://www.stratasys.com/3dprinters/production-series/connex3-systems.Google ScholarGoogle Scholar
  43. S. Sässtrunk, R. Buckley, and S. Swen. 1999. Standard RGB color spaces. In Proceedings of the IS&T/SID, 7th CIC. Scottsdale Ariz., 127--134.Google ScholarGoogle Scholar
  44. Ten24. 2013. http://www.ten24.info/?p=1164.Google ScholarGoogle Scholar
  45. Turbosquid. 2010. http://www.turbosquid.com/3d-models/free-maxmodel-apple/549455.Google ScholarGoogle Scholar
  46. R. Ulichney. 1987. Digital halftoning. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. F. L. Van Nes and M. A. Bouman. 1967. Spatial modulation transfer in the human eye. JOSA 57, 3, 401--406.Google ScholarGoogle ScholarCross RefCross Ref
  48. E. K. Vidimč, S.-P. Wang, J. Ragan-Kelley, and W. Matusik. 2013. Openfab: A programmable pipeline for multi-material fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. P. L. Vora and H. J. Trussell. 1993. Measure of goodness of a set of color-scanning filters. JOSA A 10, 1499--1508.Google ScholarGoogle ScholarCross RefCross Ref
  50. D. R. Wyble and R. S. Berns. 2000. A critical review of spectral models applied to binary color printing. Color Research and Application 25, 1, 4--19.Google ScholarGoogle ScholarCross RefCross Ref
  51. G. Wyszecki and W. Stiles. 2000. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2 ed. John Wiley & Sons, Inc.Google ScholarGoogle Scholar
  52. X. Zhang and B. A. Wandell. 1996. A spatial extension of CIELAB for digital color image reproduction. Society for Information Display Symposium Technical Digest 27, 731--734.Google ScholarGoogle Scholar
  53. B. Zhou and X. Fang. 2003. Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. ACM TOG (Proc. SIGGRAPH) 22, 3, 437--444. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 35, Issue 1
          December 2015
          150 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2870647
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 December 2015
          • Revised: 1 September 2015
          • Accepted: 1 September 2015
          • Received: 1 June 2015
          Published in tog Volume 35, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader