skip to main content
research-article

X-CAD: optimizing CAD models with extended finite elements

Published:08 November 2019Publication History
Skip Abstract Section

Abstract

We propose a novel generic shape optimization method for CAD models based on the eXtended Finite Element Method (XFEM). Our method works directly on the intersection between the model and a regular simulation grid, without the need to mesh or remesh, thus removing a bottleneck of classical shape optimization strategies. This is made possible by a novel hierarchical integration scheme that accurately integrates finite element quantities with sub-element precision. For optimization, we efficiently compute analytical shape derivatives of the entire framework, from model intersection to integration rule generation and XFEM simulation. Moreover, we describe a differentiable projection of shape parameters onto a constraint manifold spanned by user-specified shape preservation, consistency, and manufacturability constraints. We demonstrate the utility of our approach by optimizing mass distribution, strength-to-weight ratio, and inverse elastic shape design objectives directly on parameterized 3D CAD models.

Skip Supplemental Material Section

Supplemental Material

a157-hafner.mp4

mp4

247.9 MB

References

  1. K Atkinson and Ezio Venturino. 1993. Numerical evaluation of line integrals. SIAM journal on numerical analysis 30, 3 (1993), 882--888.Google ScholarGoogle Scholar
  2. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it. ACM Trans. Graph. 33, 4 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chandrajit L Bajaj, Christoph M Hoffmann, Robert E Lynch, and JEH Hopcroft. 1988. Tracing surface intersections. Computer aided geometric design 5, 4 (1988), 285--307.Google ScholarGoogle Scholar
  4. T. Belytschko and T. Black. 1999. Elastic crack growth in finite elements with minimal remeshing. Internat. J. Numer. Methods Engrg. 45, 5 (jun 1999), 601--620.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. P. Bendsøe and O. Sigmund. 1999. Material interpolation schemes in topology optimization. Archive of Applied Mechanics (Ingenieur Archiv) 69, 9--10 (nov 1999), 635--654.Google ScholarGoogle Scholar
  6. Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational design of metallophone contact sounds. ACM Trans. Graph. 34, 6 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numerical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 33, 4, Article 95 (July 2014), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Austin Cottrell, Thomas J. R Hughes, and Yuri Bazilevs. 2009. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley.Google ScholarGoogle ScholarCross RefCross Ref
  9. Sachin D. Daxini and Jagdish M. Prajapati. 2017. Parametric shape optimization techniques based on meshless methods: a review. Structural and Multidisciplinary Optimization 56, 5 (may 2017), 1197--1214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Pierre Duysinx, Laurent Van Miegroet, Thibault Jacobs, and Claude Fleury. 2006. Generalized Shape Optimization Using X-FEM and Level Set Methods. In Solid Mech. and Its App. Springer Netherlands, 23--32.Google ScholarGoogle Scholar
  11. François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. 2011. Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30, 4 (2011), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Thomas-Peter Fries and Ted Belytschko. 2010. The extended/generalized finite element method: An overview of the method and its applications. Internat. J. Numer. Methods Engrg. (aug 2010).Google ScholarGoogle Scholar
  13. G. Haasemann, M. Kästner, S. Prüger, and V. Ulbricht. 2011. Development of a quadratic finite element formulation based on the XFEM and NURBS. Internat. J. Numer. Methods Engrg. 86, 4--5 (jan 2011), 598--617.Google ScholarGoogle ScholarCross RefCross Ref
  14. Ming-Chen Hsu, Chenglong Wang, Austin J. Herrema, Dominik Schillinger, Anindya Ghoshal, and Yuri Bazilevs. 2015. An interactive geometry modeling and parametric design platform for isogeometric analysis. Computers & Mathematics with Applications 70, 7 (oct 2015), 1481--1500.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lenka Jeřábková and Torsten Kuhlen. 2009. Stable Cutting of Deformable Objects in Virtual Environments Using XFEM. IEEE Computer Graphics and Applications 29, 2 (mar 2009), 61--71.Google ScholarGoogle ScholarCross RefCross Ref
  17. Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 3 (2009).Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  19. Dan Koschier, Jan Bender, and Nils Thuerey. 2017. Robust eXtended Finite Elements for Complex Cutting of Deformables. ACM Trans. Graph. 36, 4, Article 55 (July 2017), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. László Kudela, Nils Zander, Tino Bog, Stefan Kollmannsberger, and Ernst Rank. 2015. Efficient and accurate numerical quadrature for immersed boundary methods. Advanced Modeling and Simulation in Engineering Sciences 2, 1 (2015), 10.Google ScholarGoogle ScholarCross RefCross Ref
  21. Grégory Legrain. 2013. A NURBS enhanced extended finite element approach for unfitted CAD analysis. Computational Mechanics 52, 4 (apr 2013), 913--929.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. R. Liu. 2016. On Partitions of Unity Property of Nodal Shape Functions: Rigid-Body-Movement Reproduction and Mass Conservation. International Journal of Computational Methods 13, 02 (2016), 1640003.Google ScholarGoogle ScholarCross RefCross Ref
  23. Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018. Narrow-band Topology Optimization on a Sparsely Populated Grid. ACM Trans. Graph. 37, 6, Article 251 (Dec. 2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29, 4 (2010), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Müller, S. Krämer-Eis, F. Kummer, and M. Oberlack. 2017. A high-order discontinuous Galerkin method for compressible flows with immersed boundaries. Internat. J. Numer. Methods Engrg. 110, 1 (2017), 3--30.Google ScholarGoogle ScholarCross RefCross Ref
  26. B Müller, F Kummer, and M Oberlack. 2013. Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Internat. J. Numer. Methods Engrg. 96, 8 (2013), 512--528.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation - SCA '04. ACM Press.Google ScholarGoogle Scholar
  28. Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2016. Non-linear shape optimization using local subspace projections. ACM Trans. Graph. 35, 4 (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Orest Mykhaskiv, Mladen Banovic, Salvatore Auriemma, Pavanakumar Mohanamuraly, Andrea Walther, Herve Legrand, and Jens-Dominik Müller. 2018. NURBS-based and parametric-based shape optimization with differentiated CAD kernel. Computer-Aided Design and Applications 15, 6 (2018), 916--926.Google ScholarGoogle ScholarCross RefCross Ref
  30. Ahmad R. Najafi, Masoud Safdari, Daniel A. Tortorelli, and Philippe H. Geubelle. 2017. Shape optimization using a NURBS-based interface-enriched generalized FEM. Internat. J. Numer. Methods Engrg. 111, 10 (jan 2017), 927--954.Google ScholarGoogle ScholarCross RefCross Ref
  31. B. Nayroles, G. Touzot, and P. Villon. 1992. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics 10, 5 (1992), 307--318.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Nitsche. 1971. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 1 (01 Jul 1971), 9--15.Google ScholarGoogle Scholar
  33. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make it stand. ACM Trans. Graph. 32, 4 (2013).Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Masoud Safdari, Ahmad R. Najafi, Nancy R. Sottos, and Philippe H. Geubelle. 2015. A NURBS-based interface-enriched generalized finite element method for problems with complex discontinuous gradient fields. Internat. J. Numer. Methods Engrg. 101, 12 (jan 2015), 950--964.Google ScholarGoogle ScholarCross RefCross Ref
  35. Masoud Safdari, Ahmad R Najafi, Nancy R Sottos, and Philippe H Geubelle. 2016. A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials. J. Comput. Phys. 318 (2016), 373--390.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. ACM Trans. Graph. 37, 6 (Dec. 2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik. 2017. Interactive Design Space Exploration and Optimization for CAD Models. ACM Trans. Graph. 36, 4, Article 157 (July 2017), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Christian Schumacher, Jonas Zehnder, and Moritz Bächer. 2018. Set-in-stone: Worst-case Optimization of Structures Weak in Tension. ACM Trans. Graph. 37, 6, Article 252 (Dec. 2018), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Eftychios Sifakis and Jernej Barbič. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner's Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012 Courses (SIGGRAPH '12). ACM, New York, NY, USA, Article 20, 50 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. F. S. Sin, D. Schroeder, and J. Barbič. 2013. Vega: Non-Linear FEM Deformable Object Simulator. Computer Graphics Forum 32, 1 (2013), 36--48.Google ScholarGoogle ScholarCross RefCross Ref
  41. Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational Design of Rubber Balloons. Comput. Graph. Forum 31, 2pt4 (May 2012), 835--844.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph. 31, 4, Article 48 (July 2012), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ivan E. Sutherland. 1963. Sketchpad: A Man-machine Graphical Communication System. In Proceedings of the May 21--23, 1963, Spring Joint Computer Conference (AFIPS '63 (Spring)). ACM, New York, NY, USA, 329--346.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. Open-Fab: A Programmable Pipeline for Multi-Material Fabrication. ACM Transactions on Graphics 32 (July 2013), 11. Issue 4.Google ScholarGoogle Scholar
  45. L. Wang and E. Whiting. 2016. Buoyancy Optimization for Computational Fabrication. Computer Graphics Forum 35, 2 (may 2016), 49--58.Google ScholarGoogle ScholarCross RefCross Ref
  46. Jonas Zehnder, Espen Knoop, Moritz Bächer, and Bernhard Thomaszewski. 2017. Metasilicone. ACM Trans. Graph. 36, 6 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yahan Zhou, Evangelos Kalogerakis, Rui Wang, and Ian R. Grosse. 2016. Direct shape optimization for strengthening 3D printable objects. Computer Graphics Forum 35, 7 (oct 2016), 333--342.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. X-CAD: optimizing CAD models with extended finite elements

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 38, Issue 6
          December 2019
          1292 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3355089
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 November 2019
          Published in tog Volume 38, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader