skip to main content
research-article

A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

Dry friction between hair fibers plays a major role in the collective hair dynamic behavior as it accounts for typical nonsmooth features such as stick-slip instabilities. However, due the challenges posed by the modeling of nonsmooth friction, previous mechanical models for hair either neglect friction or use an approximate smooth friction model, thus losing important visual features. In this paper we present a new generic robust solver for capturing Coulomb friction in large assemblies of tightly packed fibers such as hair. Our method is based on an iterative algorithm where each single contact problem is efficiently and robustly solved by introducing a hybrid strategy that combines a new zero-finding formulation of (exact) Coulomb friction together with an analytical solver as a fail-safe. Our global solver turns out to be very robust and highly scalable as it can handle up to a few thousand densely packed fibers subject to tens of thousands frictional contacts at a reasonable computational cost. It can be conveniently combined to any fiber model with various rest shapes, from smooth to curly. Our results, visually validated against real hair motions, depict typical hair collective effects and greatly enhance the realism of standard hair simulators.

Skip Supplemental Material Section

Supplemental Material

References

  1. Acary, V., and Brogliato, B. 2008. Numerical methods for nonsmooth dynamical systems, vol. 35 of Lecture Notes in Computational and Applied Mechanics. Springer.Google ScholarGoogle Scholar
  2. Acary, V., Cadoux, F., Lemarechal, C., and Malick, J. 2011. A formulation of the linear discrete Coulomb friction problem via convex optimization. ZAMM/Zangew Math Mech; Zeitschrift für Angewandte Mathematik und Mechanik 91 (02), 155--175.Google ScholarGoogle Scholar
  3. Alart, P., and Curnier, A. 1991. A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 3, 353--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Anitescu, M., and Tasora, A., 2008. An iterative approach for cone complementarity problems for nonsmooth dynamics.Google ScholarGoogle Scholar
  5. Anjyo, K., Usami, Y., and Kurihara, T. 1992. A simple method for extracting the natural beauty of hair. In Computer Graphics Proceedings (Proceedings of the ACM SIGGRAPH'92 conference), 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Autodesk, 2009. 3ds Max Hair & Fur. http://usa.autodesk.com/.Google ScholarGoogle Scholar
  7. Baraff, D. 1991. Coping with friction for non-penetrating rigid body simulation. In Computer Graphics Proceedings (Proceedings of the ACM SIGGRAPH'91 conference), ACM, 31--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Computer Graphics Proceedings (Proceedings of the ACM SIGGRAPH'94 conference), ACM, New York, NY, USA, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH'08 conference) 27, 3, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH'10 Conference). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bertails-Descoubes, F., Cadoux, F., Daviet, G., and Acary, V. 2011. A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies. ACM Transactions on Graphics 30 (February), 6:1--6:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH'06 conference) 25 (July), 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bonnefon, O., and Daviet, G. 2011. Quartic formulation of Coulomb 3D frictional contact. Tech. rep., INRIA - Laboratoire Jean Kuntzmann.Google ScholarGoogle Scholar
  14. Chen, J.-S., Sun, D., and Sun, J. 2008. The SC1 property of the squared norm of the SOC Fischer-Burmeister function. Operations Research Letters 36, 3, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Choe, B., Choi, M., and Ko, H.-S. 2005. Simulating complex hair with robust collision handling. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, New York, NY, USA, SCA '05, 153--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dubois, F., and Jean, M. 2006. The non smooth contact dynamic method: recent LMGC90 software developments and application. In Analysis and Simulation of Contact Problems, P. Wriggers and U. Nackenhorst, Eds., vol. 27 of Lecture Notes in Applied and Computational Mechanics. Springer Berlin/Heidelberg, 375--378. 10.1007/3-540-31761-9-44.Google ScholarGoogle Scholar
  17. Duriez, C., Dubois, F., Kheddar, A., and Andriot, C. 2006. Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions on Visualization and Computer Graphics (TVCG) 1, 12, 36--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Duriez, C. 2008. Rendering of frictional contact with deformable environments. In Haptic Rendering: Foundations, Algorithms and Applications. A. K. Peters, Ltd., Natick, MA, USA, 421--442.Google ScholarGoogle Scholar
  19. Erleben, K. 2007. Velocity-based shock propagation for multi-body dynamics animation. ACM Transaction on Graphics 26, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Fischer, A. 1992. A special Newton-type optimization method. Optimization: A Journal of Mathematical Programming and Operations Research 24, 3, 269--284.Google ScholarGoogle Scholar
  21. Fukushima, M., Luo, Z.-Q., and Tseng, P. 2002. Smoothing functions for second-order-cone complementarity problems. SIAM J. on Optimization 12 (February), 436--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. De Saxcé, G., and Feng, Z.-Q. 1998. The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. Modelling 28, 4--8, 225--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. In ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hadap, S., and Magnenat-Thalmann, N. 2001. Modeling dynamic hair as a continuum. Computer Graphics Forum 20, 3, 329--338. Proceedings of Eurographics'01.Google ScholarGoogle ScholarCross RefCross Ref
  25. Hadap, S. 2006. Oriented strands - dynamics of stiff multi-body system. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'06), ACM-EG SCA, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Harmon, D., Vouga, E., Smith, B., Tamstorf, R., and Grinspun, E. 2009. Asynchronous contact mechanics. ACM, New York, NY, USA.Google ScholarGoogle Scholar
  27. Jourdan, F., Alart, P., and Jean, M. 1998. A Gauss-Seidel like algorithm to solve frictional contact problems. Computer Methods in Applied Mechanics and Engineering 155, 31--47.Google ScholarGoogle ScholarCross RefCross Ref
  28. Kaldor, J., James, D., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. In ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH'08 conference, ACM, New York, NY, USA, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kaldor, J., James, D., and Marschner, S. 2010. Efficient yarn-based cloth with adaptive contact linearization. In ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH'10 conference, ACM, New York, NY, USA, vol. 29, 105:1--105:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kanno, Y., Martins, J. A. C., and Costa, A. P. D., 2004. Second-order cone linear complementarity formulation of quasistatic incremental frictional contact problem.Google ScholarGoogle Scholar
  31. Kaufman, D., Edmunds, T., and Pai, D. 2005. Fast frictional dynamics for rigid bodies. ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH'05 conference) 24, 3, 946--956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kaufman, D., Sueda, S., James, D., and Pai, D. 2008. Staggered projections for frictional contact in multibody systems. ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH Asia'08 conference) 27, 5, 164:1--164:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. McAdams, A., Selle, A., Ward, K., Sifakis, E., and Teran, J. 2009. Detail preserving continuum simulation of straight hair. ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH'09 conference) 28, 3, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Moreau, J.-J., and Jean, M. 1996. Numerical treatment of contact and friction: the contact dynamics method. In The 1996 3rd Biennial Joint Conference on Engineering Systems Design and Analysis, ESDA, 201--208.Google ScholarGoogle Scholar
  35. Moreau, J.-J., 1988. Unilateral contact and dry friction in finite freedom dynamics. Nonsmooth mechanics and applications, CISM Courses Lect. 302, 1--82 (1988).Google ScholarGoogle Scholar
  36. Moreau, J. 1994. Some numerical methods in multibody dynamics: Application to granular materials. European Journal of Mechanics - A/Solids supp., 4, 93--114.Google ScholarGoogle Scholar
  37. Otaduy, M., Tamstorf, R., Steinemann, D., and Gross, M. 2009. Implicit contact handling for deformable objects. Computer Graphics Forum (Proceedings of Eurographics'09) 28, 2 (apr).Google ScholarGoogle Scholar
  38. Pai, D. 2002. Strands: Interactive simulation of thin solids using cosserat models. Computer Graphics Forum 21, 3, 347--352. Proceedings of Eurographics'02.Google ScholarGoogle ScholarCross RefCross Ref
  39. Plante, E., Cani, M.-P., and Poulin, P. 2001. A layered wisp model for simulating interactions inside long hair. In EG workshop on Computer Animation and Simulation (EG CAS'01), Springer, Computer Science, 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Qi, L., and Sun, J. 1993. A nonsmooth version of Newton's method. Mathematical Programming 58, 353--367. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Radjai, F., Wolf, D., Jean, M., and Moreau, J.-J. 1998. Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80 (Jan), 61--64.Google ScholarGoogle ScholarCross RefCross Ref
  42. Rosenblum, R., Carlson, W., and Tripp, E. 1991. Simulating the structure and dynamics of human hair: Modeling, rendering, and animation. The Journal of Visualization and Computer Animation 2, 4, 141--148.Google ScholarGoogle ScholarCross RefCross Ref
  43. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH'08 conference) 27, 3, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Silcowitz, M., Niebe, S., and Erleben, K. 2009. Nonsmooth Newton Method for Fischer function reformulation of contact force problems for interactive rigid body simulation. 105--114.Google ScholarGoogle Scholar
  45. Spillmann, J., and Teschner, M. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07), ACM-EG SC A, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Teschner, M., Heidelberger, B., Müller, M., Pomeranerts, D., and Gross, M. 2003. Optimized spatial hashing for collision detection of deformable objects. In Vision, Modeling, Visualization (VMV 2003), 47--54.Google ScholarGoogle Scholar
  47. Ward, K., Simmons, M., Milne, A., Yosumi, H., and Zhao, X. 2010. Simulating Rapunzel's hair in Disney's Tangled. In ACM SIGGRAPH 2010 Talks, ACM, New York, NY, USA, SIGGRAPH '10, 22:1--22:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhang, H., Li, J., and Pan, S. 2011. New second-order cone linear complementarity formulation and semi-smooth Newton algorithm for finite element analysis of 3d frictional contact problem. Computer Methods in Applied Mechanics and Engineering 200, 1--4, 77--88.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 30, Issue 6
      December 2011
      678 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2070781
      Issue’s Table of Contents

      Copyright © 2011 ACM

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 December 2011
      Published in tog Volume 30, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader