skip to main content
research-article

Efficient and reliable low-power backscatter networks

Published:13 August 2012Publication History
Skip Abstract Section

Abstract

There is a long-standing vision of embedding backscatter nodes like RFIDs into everyday objects to build ultra-low power ubiquitous networks. A major problem that has challenged this vision is that backscatter communication is neither reliable nor efficient. Backscatter nodes cannot sense each other, and hence tend to suffer from colliding transmissions. Further, they are ineffective at adapting the bit rate to channel conditions, and thus miss opportunities to increase throughput, or transmit above capacity causing errors.

This paper introduces a new approach to backscatter communication. The key idea is to treat all nodes as if they were a single virtual sender. One can then view collisions as a code across the bits transmitted by the nodes. By ensuring only a few nodes collide at any time, we make collisions act as a sparse code and decode them using a new customized compressive sensing algorithm. Further, we can make these collisions act as a rateless code to automatically adapt the bit rate to channel quality --i.e., nodes can keep colliding until the base station has collected enough collisions to decode. Results from a network of backscatter nodes communicating with a USRP backscatter base station demonstrate that the new design produces a 3.5× throughput gain, and due to its rateless code, reduces message loss rate in challenging scenarios from 50% to zero.

References

  1. Alien Technology Inc. ALN-9640 Squiggle Inlay. www.alientechnology.com.Google ScholarGoogle Scholar
  2. Alien Technology Inc. Common RFID Implementation Issues. Tech. Report. http://www.alientechnology.com/docs/.Google ScholarGoogle Scholar
  3. P. Bardell, W. McAnney, and J. Savir. Built-In Test for VLSI: Pseudorandom Techniques. John Wiley & Sons, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining geometry and combinatorics: a unified approach to sparse signal recovery. Allerton Conference, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. Berinde and P. Indyk. Sequential sparse matching pursuit. Allerton Conference, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Brazeal. RFID: Improving the Customer Experience. Paramount Market Publishing, 2009.Google ScholarGoogle Scholar
  7. M. Buettner and D. Wetherall. A Gen 2. RFID Monitor Based on the USRP. SIGCOMM Communication Review, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Buettner and D. Wetherall. A Software Radio-based UHF RFID Reader for PHY/MAC Experimentation. IEEE RFID, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  9. E. Candès, J. Romberg, and T. Tao. Stable signal recovery incomplete and inaccurate measurements. Comm. Pure Appl. Math., 2006.Google ScholarGoogle ScholarCross RefCross Ref
  10. E. Candes and T. Tao. Near-optimal signal recovery from random projections and universal encoding strategies. IEEE Transactions on Information Theory, November 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. I. Carron. Compressive sensing: Section 4 sparse recovery solvers. http://sites.google.com/site/igorcarron2/cs, 2012.Google ScholarGoogle Scholar
  12. N. Cho, S.-J. Song, S. Kim, S. Kim, and H.-J. Yoo. A 5.1-μw UHF RFID tag chip integrated with sensors for wireless environmental monitoring. In ESSCIRC, 2005.Google ScholarGoogle Scholar
  13. D. Donoho. Compressed sensing. IEEE Trans. on Info. Theory, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. EPCglobal Inc. EPCglobal Class 1 Generation 2 V. 1.2.0. http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2.Google ScholarGoogle Scholar
  15. C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting active flows on high speed links. In IMC, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. Finkenzeller. RFID Handbook. John Wiley & Sons, 2010.Google ScholarGoogle Scholar
  17. A. Fletcher, V. Goyal, and S. Rangan. A sparsity detection framework for on-off random access channels. In ISIT, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Frost & Sullivan. Global RFID healthcare and pharmaceutical market. Industry Report, 2011.Google ScholarGoogle Scholar
  19. Frost & Sullivan. Global RFID market. Industry Report, 2011.Google ScholarGoogle Scholar
  20. R. Gallager. Low-density parity-check codes. IEEE Transactions on Information Theory, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Gollakota and D. Katabi. ZigZag decoding: Combating hidden terminals in wireless networks. In SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software for disciplined convex programming. http://cvxr.com/cvx.Google ScholarGoogle Scholar
  23. R. E. Greeff, F. W. Smith, and D. K. Ovard. RFID device time synchronization. Patent US7889083, 2006.Google ScholarGoogle Scholar
  24. J. Griffin and G. Durgin. Complete link budgets for backscatter-radio and RFID systems. IEEE Antennas and Propagation Magazine, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Gudipati and S. Katti. Strider: Automatic rate adaptation and collision handling. In ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Halperin, T. Anderson, and D. Wetherall. Taking the sting out of carrier sense: Interference cancellation for wireless lans. In ACM MobiCom, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Impinj Speedway. R420 RFID reader. www.impinj.com.Google ScholarGoogle Scholar
  28. E. Inc. Universal Software Radio Peripheral. http://ettus.com.Google ScholarGoogle Scholar
  29. T. Jayram and D. Woodruf. Optimal bounds for Johnson-Lindenstrauss transforms and streaming problems with sub-constant error. In SODA, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Karim and M. Sarraf. W-CDMA and CDMA2000 for 3G mobile networks. McGraw-Hill, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Klair, K.-W. Chin, and R. Raad. A survey and tutorial of RFID anti-collision protocols. IEEE Comm. Surveys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Kodialam and T. Nandagopal. Fast and reliable estimation schemes in RFID systems. MobiCom, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Kou, S. Lin, and M. Fossorier. Low-density parity-check codes based on finite geometries: a rediscovery and new results. Transactions on Information Theory, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Laird Technologies. Crushcraft S9028PCRW RFID antenna. http://www.arcadianinc.com/.Google ScholarGoogle Scholar
  35. T. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, 1998.Google ScholarGoogle Scholar
  36. H.-C. Liu and J.-P. Ciou. Performance analysis of multi-carrier RFID systems. In SPECTS, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. Mutti and C. Floerkemeier. CDMA-based RFID systems in dense scenarios: Concepts and challenges. In IEEE Int. Conf. RFID, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  38. M. Pelino, C. Mines, J. Warner, and S. Musto. M2M connectivity helps telcos offset declining traditional services. Forrester Research, 2011.Google ScholarGoogle Scholar
  39. J. Perry, H. Balakrishnan, and D. Shah. Rateless spinal codes. In HotNets-X, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. E. Porat and M. Strauss. Sublinear time, measurement optimal, sparse recovery for all. In SODA, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Posamentier. RFID tag clock synchronization. Patent US20070205871, 2006.Google ScholarGoogle Scholar
  42. PowerID. Battery assisted passive RFID tags read at 160Google ScholarGoogle Scholar
  43. feet. The RFID Network, 2012. www.rfid.net.Google ScholarGoogle Scholar
  44. D. Shen, G. Woo, A. Lippman, D. Reed, and J. Wang. Separation of multiple passive RFID signals using software defined radio. In IEEE Int. Conference on RFID, 2009.Google ScholarGoogle Scholar
  45. M. Sipser and D. Spielman. Expander codes. IEEE Transactions on Information Theory, 42:1710--1722, 1996. Google ScholarGoogle ScholarCross RefCross Ref
  46. C. Swedberg. Visual data center combines RFID with 3-d thermal imaging. RFID Journal, July 2010.Google ScholarGoogle Scholar
  47. D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer wireless bit rate adaptation. In ACM SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. A. Wang, S. Cho, C. Sodini, and A. Chandrakasan. Energy efficient modulation and mac for asymmetric RF microsensor systems. In Int. Symposium on Low Power Electronics, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. J. Yu, K. Liu, and G. Yan. A novel RFID anti-collision algorithm based on sdma. In WiCOM, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  51. H. Zhang, J. Gummeson, B. Ransford, and K. Fu. Moo: A batteryless computational RFID and sensing platform. Tech Report UMASS, 2011. http://spqr.cs.umass.edu/moo/.Google ScholarGoogle Scholar
  52. Y. Zhang, H.-H. Chen, and M. Guizani. Cooperative Wireless Communications. CRC Press, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. T. Zimmerman. Assessing the capabilities of RFID technologies. Gartner, 2009.Google ScholarGoogle Scholar

Index Terms

  1. Efficient and reliable low-power backscatter networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM SIGCOMM Computer Communication Review
      ACM SIGCOMM Computer Communication Review  Volume 42, Issue 4
      Special october issue SIGCOMM '12
      October 2012
      538 pages
      ISSN:0146-4833
      DOI:10.1145/2377677
      Issue’s Table of Contents

      Copyright © 2012 Authors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 August 2012

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader