skip to main content
10.1145/2018436.2018455acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

Strider: automatic rate adaptation and collision handling

Published:15 August 2011Publication History

ABSTRACT

This paper presents the design, implementation and evaluation of Strider, a system that automatically achieves almost the optimal rate adaptation without incurring any overhead. The key component in Strider is a novel code that has two important properties: it is rateless and collision-resilient. First, in time-varying wireless channels, Strider's rateless code allows a sender to effectively achieve almost the optimal bitrate, without knowing how the channel state varies. Second, Strider's collision-resilient code allows a receiver to decode both packets from collisions, and achieves the same throughput as the collision-free scheduler. We show via theoretical analysis that Strider achieves Shannon capacity for Gaussian channels, and our empirical evaluation shows that Strider outperforms SoftRate, a state of the art rate adaptation technique by 70% in mobile scenarios and by upto 2.8× in contention scenarios.

Skip Supplemental Material Section

Supplemental Material

sigcomm_5_2.mp4

mp4

183.9 MB

References

  1. V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW: Media access protocol for wireless lans. In Proceedings of the international conference on Applications, technologies, architectures, and protocols for computer communications (SIGCOMM), 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Bicket. Bit-rate selection in wireless networks. MS Thesis, Massachusetts Institute of Technology, 2005.Google ScholarGoogle Scholar
  3. G. Caire, S. Guemghar, A. Roumy, and S. VerdÃZ. Maximizing the spectral efficiency of coded cdma under successive decoding. IEEE Transactions on Information Theory, Jan 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Camp and E. Knightly. Modulation rate adaptation in urban and vehicular environments:cross-layer implementation and experimental evaluation. In ACM MOBICOM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. U. Erez, M. Trott, and G. Wornell. Rateless coding and perfect rate-compatible codes for gaussian channels. In Information Theory, 2006 IEEE International Symposium on, pages 528--532, july 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. Free Software Foundation. Gnuradio. http://gnuradio.org.Google ScholarGoogle Scholar
  7. P. Frenger, S. Parkvall, and E. Dahlman. Performance comparison of harq with chase combining and incremental redundancy for hsdpa. In IEEE VTC, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  8. R. Gallagher. Low density parity check codes. In PhD thesis, MIT, 1962.Google ScholarGoogle Scholar
  9. S. Gollakota and D. Katabi. ZigZag decoding: combating hidden terminals in wireless networks. In SIGCOMM '08: Proceedings of the ACM SIGCOMM 2008 conference on Data communication, pages 159--170, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Halperin, T. Anderson, and D. Wetherall. Taking the sting out of carrier sense: interference cancellation for wireless lans. In MobiCom '08: Proceedings of the 14th ACM international conference on Mobile computing and networking, pages 339--350, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Halperin, A. Sheth, W. Hu, and D. Wetherall. Predictable 802.11 packet delivery from wireless channel measurements. In ACM SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. Jamieson and H. Balakrishnan. Ppr: Partial packet recovery for wireless networks. In ACM SIGCOMM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. Judd, X. Wang, and P. Steenkiste. Efficient channel-aware rate adaptation in dynamic environments. In ACM MOBISYS, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Kamerman and L. Monteban. Wavelan r-ii: A high-performance wireless lan for the unlicensed band. Bell Labs Technical Journal, 2, 1997.Google ScholarGoogle Scholar
  15. S. Katti, S. Gollakota, and D. Katabi. Embracing wireless interference: analog network coding. In SIGCOMM '07: Proceedings of the 2007 conference on Applications, technologies, architectures, and protocols for computer communications, pages 397--408, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. L. E. Li, K. Tan, Y. Xu, H. Viswanathan, and Y. R. Yang. Remap decoding: Simple retransmission permutation can resolve overlapping channel collisions. In ACM MOBICOM, Sep 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Lin and P. Yu. A hybrid arq scheme with parity retransmission for error control of satellite channels. IEEE Trans. on Communications, 1982.Google ScholarGoogle Scholar
  18. M. Luby. Lt codes. In Proc. of FOCS 2002, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Mackay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. MadWiFi. Onoe rate control. http://madwifi.org/browser/trunk/ath_rate/onoe.Google ScholarGoogle Scholar
  21. G. V. L. J. N. Czink, B. Bandemer and A. Paulraj. Stanford july 2008 radio channel measurement campaign. In COST 2100, October 2008.Google ScholarGoogle Scholar
  22. R. Palanki and J. Yedidia. Rateless codes on noisy channels. In ISIT, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. Sarwate and M. Gastpar. Rateless codes for avc models. Information Theory, IEEE Transactions on, 56(7):3105--3114, july 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Schmidl and D. Cox. Robust frequency and timing synchronization for ofdm. IEEE Transactions on Communications, Dec. 1997.Google ScholarGoogle Scholar
  25. S. Sen, R. R. Choudhury, and S. Nelakuditi. Csma/cn: Carrier sense multiple access with collision notification. In Mobicom, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi. Accurate: Constellation based rate estimation in wireless networks. In NSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Shokrollahi. Raptor codes. IEEE/ACM Trans. Netw., 14(SI):2551--2567, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. E. Soljanin, R. Liu, and P. Spasojevic. Hybrid arq in wireless networks. In DIMACS Workshop on Networking, 2003.Google ScholarGoogle Scholar
  29. G. Tan and J. Guttag. Time-based fairness improves performance in multi-rate wlans. In Usenix Annual Technical Conference, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Van de Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson. On channel estimation in ofdm systems. 1995.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer wireless bit rate adaptation. In ACM SIGCOMM, Barcelona, Spain, August 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Warrier and U. Madhow. On the capacity of cellular cdma with successive decoding and controlled power disparities. In Proc. 48th IEEE Vehicular Technology Conf., 1998.Google ScholarGoogle ScholarCross RefCross Ref
  34. S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust rate adaptation for 802.11 wireless networks. In Proceedings of the 12th annual international conference on Mobile computing and networking, New York, NY, USA, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Strider: automatic rate adaptation and collision handling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGCOMM '11: Proceedings of the ACM SIGCOMM 2011 conference
        August 2011
        502 pages
        ISBN:9781450307970
        DOI:10.1145/2018436
        • cover image ACM SIGCOMM Computer Communication Review
          ACM SIGCOMM Computer Communication Review  Volume 41, Issue 4
          SIGCOMM '11
          August 2011
          480 pages
          ISSN:0146-4833
          DOI:10.1145/2043164
          Issue’s Table of Contents

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 August 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGCOMM '11 Paper Acceptance Rate32of223submissions,14%Overall Acceptance Rate554of3,547submissions,16%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader