skip to main content
10.1145/2018436.2018454acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

Random access heterogeneous MIMO networks

Published:15 August 2011Publication History

ABSTRACT

This paper presents the design and implementation of 802.11n+, a fully distributed random access protocol for MIMO networks. 802.11n+ allows nodes that differ in the number of antennas to contend not just for time, but also for the degrees of freedom provided by multiple antennas. We show that even when the medium is already occupied by some nodes, nodes with more antennas can transmit concurrently without harming the ongoing transmissions. Furthermore, such nodes can contend for the medium in a fully distributed way. Our testbed evaluation shows that even for a small network with three competing node pairs, the resulting system about doubles the average network throughput. It also maintains the random access nature of today's 802.11n networks.

Skip Supplemental Material Section

Supplemental Material

sigcomm_5_1.mp4

mp4

126.7 MB

References

  1. 4x4 MIMO Technology. http://www.quantenna.com/4x4-mimo.html.Google ScholarGoogle Scholar
  2. ACQUITEK Inc., Fury GPS Disciplined Frequency Standard. http://www.acquitek.com/fury/.Google ScholarGoogle Scholar
  3. Ettus Inc., Universal Software Radio Peripheral. http://ettus.com.Google ScholarGoogle Scholar
  4. System Description and Operating Principles for High Throughput Enhancements to 802.11. IEEE 802.11-04/0870r, 2004.Google ScholarGoogle Scholar
  5. IEEE Std 802.11-1997, pages i--445, 1997.Google ScholarGoogle Scholar
  6. IEEE Std 802.11n-2009, pages c1 --502, 2009.Google ScholarGoogle Scholar
  7. E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly. Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs. In ACM MobiCom, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. V. Cadambe and S. Jafar. Interference Alignment and Degrees of Freedom of the K-User Interference Channel. IEEE Trans. Inf. Theory, 54(8):3425--3441, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. O. Edfors, M. Sandell, J. Van de Beek, S. Wilson, and P. Borjesson. OFDM Channel Estimation by Singular Value Decomposition. IEEE Trans. Comm., 46(7):931--939, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Ganesan, M. Sellathurai, and T. Ratnarajah. Opportunistic Interference Projection in Cognitive MIMO Radio with Multiuser Diversity. In IEEE DySPAN, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. G.J.Foschini. Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas. In Bell LAbs Technical Journal, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Gollakota and D. Katabi. Zigzag Decoding: Combating Hidden Terminals in Wireless Networks. In ACM SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Gollakota, S. D. Perli, and D. Katabi. Interference Alignment and Cancellation. In ACM SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Guillaud, D. Slock, and R. Knoop. A Practical Method For Wireless Channel Reciprocity Exploitation Through Relative Calibration. In ISSPA, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Guillaud, D. Slock, and R. Knopp. A Practical Method for Wireless Channel Reciprocity Exploitation through Relative Calibration. In Signal Processing and Its Applications, 2005.Google ScholarGoogle Scholar
  16. D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 Packet Delivery from Wireless Channel Measurements. In ACM SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Handel and M. Huber. Integrated Broadband Networks; An Introduction to ATM-Based Networks. Addison-Wesley Longman Publishing Co., Inc., 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Heiskala and J. Terry. OFDM Wireless LANs: A Theoretical and Practical Guide. Sams Indianapolis, IN, USA, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Jafar and S. Shamai. Degrees of Freedom Region of the MIMO X Channel. IEEE Trans. Inf. Theory, 54(1):151--170, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. C.-J. Lin, Y. Chuang, and D. Katabi. A Light-Weight Wireless Handshake. In MIT Tech Report, 2011.Google ScholarGoogle Scholar
  21. R. Lupas and S. Verdu. Linear Multiuser Detectors for Synchronous Code-Division Multiple-Access Channels. IEEE Trans. Inf. Theory, 35(1):123--136, Jan. 1989.Google ScholarGoogle Scholar
  22. M. Maddah-Ali, A. Motahari, and A. Khandani. Communication over MIMO X Channels: Interference Alignment, Decomposition, and Performance Analysis. IEEE Trans. Inf. Theory, 54(8):3457--3470, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M.K.Varanasi and T.Guess. Optimum Decision Feedback Multiuser Equalization and Successive Decoding Achieves the Total Capacity of the Gaussian Multiple-Access Channel. In Proceedings of the Asilomar Conference on Signals, Systems and Computers, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  25. B. Nosrat-Makoouei, J. Andrews, and R. Heath. User Admission in MIMO interference Alignment Networks. In IEEE ICASSP, Prague, May 2011.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Perlaza, N. Fawaz, S. Lasaulce, and M. Debbah. From Spectrum Pooling to Space Pooling: Opportunistic Interference Alignment in MIMO Cognitive Networks. IEEE Trans. Signal Process., 58(7):3728--3741, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Poon, R. Brodersen, and D. Tse. Degrees of Freedom in Multiple Antenna Channels: a Signal Space Approach. IEEE Trans. Inf. Theory, 51(2):523--536, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. H. Rahul, H. Hassanieh, and D. Katabi. SourceSync: a Distributed Wireless Architecture for Exploiting Sender Diversity. In ACM SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Sayeed. Deconstructing Multiantenna Fading Channels. IEEE Trans. Signal Process., 50(10):2563--2579, Oct. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, and Y. Zhang. Fine-Grained Channel Access in Wireless LAN. In ACM SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang, M. Chen, and G. M. Voelker. SAM: Enabling Practical Spatial Multiple Access in Wireless LAN. In ACM MobiCom, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Random access heterogeneous MIMO networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGCOMM '11: Proceedings of the ACM SIGCOMM 2011 conference
        August 2011
        502 pages
        ISBN:9781450307970
        DOI:10.1145/2018436
        • cover image ACM SIGCOMM Computer Communication Review
          ACM SIGCOMM Computer Communication Review  Volume 41, Issue 4
          SIGCOMM '11
          August 2011
          480 pages
          ISSN:0146-4833
          DOI:10.1145/2043164
          Issue’s Table of Contents

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 August 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGCOMM '11 Paper Acceptance Rate32of223submissions,14%Overall Acceptance Rate554of3,547submissions,16%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader