skip to main content
research-article
Public Access

Data-driven structural priors for shape completion

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

Acquiring 3D geometry of an object is a tedious and time-consuming task, typically requiring scanning the surface from multiple viewpoints. In this work we focus on reconstructing complete geometry from a single scan acquired with a low-quality consumer-level scanning device. Our method uses a collection of example 3D shapes to build structural part-based priors that are necessary to complete the shape. In our representation, we associate a local coordinate system to each part and learn the distribution of positions and orientations of all the other parts from the database, which implicitly also defines positions of symmetry planes and symmetry axes. At the inference stage, this knowledge enables us to analyze incomplete point clouds with substantial occlusions, because observing only a few regions is still sufficient to infer the global structure. Once the parts and the symmetries are estimated, both data sources, symmetry and database, are fused to complete the point cloud. We evaluate our technique on a synthetic dataset containing 481 shapes, and on real scans acquired with a Kinect scanner. Our method demonstrates high accuracy for the estimated part structure and detected symmetries, enabling higher quality shape completions in comparison to alternative techniques.

References

  1. Breiman, L. 2001. Random forests. Machine Learning 45, 1, 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM TOG 30, 4 (July), 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Choi, S., Zhou, Q.-Y., and Koltun, V. 2015. Robust reconstruction of indoor scenes. CVPR.Google ScholarGoogle Scholar
  4. Eiter, T., and Mannila, H. 1997. Distance measures for point sets and their computation. Acta Informatica 34, 2, 109--133.Google ScholarGoogle ScholarCross RefCross Ref
  5. Felzenszwalb, P., McAllester, D., and Ramanan, D. 2008. A discriminatively trained, multiscale, deformable part model. In IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  6. Fish, N., Averkiou, M., van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D., and Mitra, N. J. 2014. Meta-representation of shape families. ACM TOG 33, 4, 34:1--34:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Proc. SMI 33, 3, 262--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Han, F., and Zhu, S.-C. 2009. Bottom-up/top-down image parsing with attribute grammar. IEEE PAMI 31, 1, 59--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hu, R., Fan, L., and Liu, L. 2012. Co-segmentation of 3d shapes via subspace clustering. SGP 31, 5, 1703--1713. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. In SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Huang, Q., Wang, F., and Guibas, L. 2014. Functional map networks for analyzing and exploring large shape collections. ACM TOG 33, 4 (July), 36:1--36:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Janoch, A., Karayev, S., Jia, Y., Barron, J., Fritz, M., Saenko, K., and Darrell, T. 2011. A category-level 3-d object dataset: Putting the kinect to work. In ICCV Workshop on Consumer Depth Cameras in Computer Vision, 1168--1174.Google ScholarGoogle Scholar
  13. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. In SIGGRAPH, 102:1--102:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model for component-based shape synthesis. ACM TOG 31, 4 (July), 55:1--55:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kazhdan, M., and Hoppe, H. 2013. Screened poisson surface reconstruction. Transactions on Graphics 32, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kim, Y. M., Mitra, N. J., Yan, D.-M., and Guibas, L. 2012. Acquiring 3d indoor environments with variability and repetition. ACM TOG 31, 6 (Nov.), 138:1--138:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., and Funkhouser, T. 2013. Learning part-based templates from large collections of 3d shapes. ACM TOG 32, 4, 70:1--70:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kim, Y. M., Mitra, N. J., Huang, Q., and Guibas, L. 2013. Guided real-time scanning of indoor objects. Computer Graphics Forum 32, 7, 177--186.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kim, V. G., Chaudhuri, S., Guibas, L., and Funkhouser, T. 2014. Shape2pose: Human-centric shape analysis. ACM TOG 33, 4 (July), 120:1--120:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kolmogorov, V. 2006. Convergent tree-reweighted message passing for energy minimization. IEEE PAMI 28, 10, 1568--1583. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lai, K., Bo, L., Ren, X., and Fox, D. 2011. A large-scale hierarchical multi-view rgb-d object dataset. In IEEE ICRA, 1817--1824.Google ScholarGoogle Scholar
  22. Li, Y., Dai, A., Guibas, L., and Niessner, M. 2015. Database-assisted object retrieval for real-time 3d reconstruction. Eurographics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, T., Chaudhuri, S., Kim, V. G., Huang, Q., Mitra, N. J., and Funkhouser, T. 2014. Creating consistent scene graphs using a probabilistic grammar. ACM TOG 33, 6, 211:1--211:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Makadia, A., and Yumer, M. E. 2014. Learning 3d part detection from sparsely labeled data. In 3DV, IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Martinovic, A., and Van Gool, L. 2013. Bayesian grammar learning for inverse procedural modeling. In IEEE CVPR, 201--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mitra, N. J., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mitra, N. J., Pauly, M., Wand, M., and Ceylan, D. 2013. Symmetry in 3d geometry: Extraction and applications. CGF. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nan, L., Xie, K., and Sharf, A. 2012. A search-classify approach for cluttered indoor scene understanding. SIGGRAPH Asia 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. 2005. Example-based 3d scan completion. SGP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pauly, M., Mitra, N. J., wallner, J., Pottmann, H., and Guibas, L. J. 2008. Discovering structural regularity in 3d geometry. ACM TOG 27, 3 (Aug.), 43:1--43:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. ACM TOG 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shao, T., Monszpart, A., Zheng, Y., Koo, B., Xu, W., Zhou, K., and Mitra, N. J. 2014. Imagining the unseen: Stability-based cuboid arrangements for scene understanding. ACM TOG 33, 6 (Nov.), 209:1--209:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. ACM TOG 31, 6 (Nov.), 180:1--180:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. SIGGRAPH Asia 30, 6, 126:1--126:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. 2012. Indoor segmentation and support inference from rgbd images. In ECCV, 746--760. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sipiran, I., Gregor, R., and Schreck, T. 2014. Approximate symmetry detection in partial 3d meshes. CGF 33, 7, 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Thrun, S., and Wegbreit, B. 2005. Shape from symmetry. In ICCV, 1824--1831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wächter, A., and Biegler, L. T. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Active co-analysis of a set of shapes. ACM TOG 31, 6 (Nov.), 165:1--165:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wu, C., Lenz, I., and Saxena, A. 2014. Hierarchical semantic labeling for task-relevant rgb-d perception. RSS.Google ScholarGoogle Scholar
  41. Xie, Z., Xu, K., Liu, L., and Xiong, Y. 2014. 3d shape segmentation and labeling via extreme learning machine. SGP.Google ScholarGoogle Scholar
  42. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z. 2010. Style-content separation by anisotropic part scales. SIGGRAPH Asia 29, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3d shape galleries. 57:1--57:10.Google ScholarGoogle Scholar
  44. Yumer, M. E., and Kara, L. B. 2014. Co-constrained handles for deformation in shape collections. ACM TOG 33, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yumer, M., Chun, W., and Makadia, A. 2014. Co-segmentation of textured 3d shapes with sparse annotations. In IEEE CVPR, 240--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zheng, Q., Sharf, A., Wan, G., Li, Y., Mitra, N. J., Cohen-Or, D., and Chen, B. 2010. Non-local scan consolidation for 3d urban scenes. ACM TOG 29, 4 (July), 94:1--94:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Zheng, Y., Cohen-Or, D., and Mitra, N. J. 2013. Smart variations: Functional substructures for part compatibility. Computer Graphics Forum 32, 195--204.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Data-driven structural priors for shape completion

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 6
        November 2015
        944 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2816795
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 November 2015
        Published in tog Volume 34, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader