skip to main content
10.1145/2934872.2934898acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction

Published:22 August 2016Publication History

ABSTRACT

Bitrate adaptation is critical in ensuring good users’ quality-of-experience (QoE) in Internet video delivery system. Several efforts have argued that accurate throughput prediction can dramatically improve (1) initial bitrate selection for low startup delay and high initial resolution; (2) midstream bitrate adaptation for high QoE. However, prior ef- forts did not systematically quantify real-world throughput predictability or develop good prediction algorithms. To bridge this gap, this paper makes three key technical contributions: First, we analyze the throughput characteristics in a dataset with 20M+ sessions. We find: (a) Sessions sharing similar key features (e.g., ISP, region) present similar initial values and dynamical patterns; (b) There is a natural “stateful” dynamical behavior within a given session. Second, building on these insights, we develop CS2P, a better throughput prediction system. CS2P leverages data-driven approach to learn (a) clusters of similar sessions, (b) an initial throughput predictor, and (c) a Hidden-Markov-Model based midstream predictor modeling the stateful evolution of throughput. Third, we develop a prototype system and show by trace-driven simulation and real-world experiments that CS2P outperforms state-of-art by 40% and 50% median pre- diction error respectively for initial and midstream through- put and improves QoE by 14% over buffer-based adaptation algorithm.

Skip Supplemental Material Section

Supplemental Material

p272.mp4

mp4

404.4 MB

References

  1. 1.Cisco Visual Networking Index. http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html.Google ScholarGoogle Scholar
  2. 2.DASH-264 JavaScript reference client landing page 1.4.0. http://dashif.org/reference/players/javascript/1.4.0/samples/dash-if-reference-player/index.html.Google ScholarGoogle Scholar
  3. 3.Dash.js. https://github.com/Dash-Industry-Forum/dash.js/wiki.Google ScholarGoogle Scholar
  4. 4.FCC Measuring Broadband America. http://www.fcc.gov/measuring-broadband-america.Google ScholarGoogle Scholar
  5. 5.Final Report on the Validation of Objective Models of Video Quality Assessment. http://videoclarity.com/PDF/COM-80E_final_report.pdf.Google ScholarGoogle Scholar
  6. 6.Hadamard Product. https://en.wikipedia.org/wiki/Hadamard_product_(matrices).Google ScholarGoogle Scholar
  7. 7.HSDPA. http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/.Google ScholarGoogle Scholar
  8. 8.iQIYI. http://www.iqiyi.com.Google ScholarGoogle Scholar
  9. 9.MLab NDT. https://console.cloud.google.com/storage/browser/m-lab/ndt/.Google ScholarGoogle Scholar
  10. 10.Netflix. http://www.netflix.com.Google ScholarGoogle Scholar
  11. 11.Node.js. https://nodejs.org/en/.Google ScholarGoogle Scholar
  12. 12.Pathchar. http://www.caida.org/tools/utilities/others/pathchar/.Google ScholarGoogle Scholar
  13. 13.YouTube live encoder settings, bitrates and resolutions. https://support.google.com/youtube/answer/2853702?hl=en.Google ScholarGoogle Scholar
  14. 14.S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-Based Traffic Shaping for Stabilizing Oscillating Adaptive Streaming Players. In Proc.ACM NOSSDAV, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. 15.A. Balachandran, V. Sekar, A. Akella, and S. Seshan. Analyzing the Potential Benefits of CDN Augmentation Strategies for Internet Video Workloads. In Proc.ACM IMC, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. 16.A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang. Developing a Predictive Model of Quality of Experience for Internet Video. In Proc.ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. 17.H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz. Analyzing Stability in Wide-area Network Performance. ACM SIGMETRICS Performance Evaluation Review, 25(1):2–12, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. 18.C. M. Bishop. Pattern Recognition and Machine Learning. springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. 19.F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized Network Coordinate System. In Proc.ACM SIGCOMM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. 20.L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive Live Video Streaming. In Proc.ACM MMSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 21.M. Dischinger, M. Marcon, S. Guha, P. K. Gummadi, R. Mahajan, and S. Saroiu. Glasnost: Enabling End Users to Detect Traffic Differentiation. In Proc.USENIX NSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. 22.F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the Impact of Video Quality on User Engagement. In Proc.ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. 23.A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and H. Zhang. C3: Internet-Scale Control Plane for Video Quality Optimization. In Proc.USENIX NSDI, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. 24.Q. He, C. Dovrolis, and M. Ammar. On the Predictability of Large Transfer TCP Throughput. In Proc.ACM SIGCOMM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25.N. Hu, L. Li, Z. M. Mao, P. Steenkiste, and J. Wang. A Measurement Study of Internet Bottlenecks. In Proc.IEEE INFOCOM, 2005.Google ScholarGoogle Scholar
  26. 26.N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang. Locating Internet Bottlenecks: Algorithms, Measurements, and Implications. In Proc.ACM SIGCOMM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. 27.T. Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service. In Proc.ACM SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. 28.M. Jain and C. Dovrolis. End-to-end Estimation of the Available Bandwidth Variation Range. ACM SIGMETRICS Performance Evaluation Review, 33(1):265–276, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. 29.J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang. CFA: A Practical Prediction System for Video QoE Optimization. In Proc.USENIX NSDI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. 30.J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in HTTP-Based Adaptive Video Streaming with Festive. IEEE/ACM Transactions on Networking, 22(1):326–340, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. 31.S. S. Krishnan and R. K. Sitaraman. Video Stream Quality Impacts Viewer Behavior: Inferring Causality Using Quasi-experimental Designs. In Proc.ACM IMC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. 32.Y. S. Lim, Y. C. Chen, E. M. Nahum, D. Towsley, and R. J. Gibbens. How Green is Multipath TCP for Mobile Devices? In Proc.ACM SIGCOMM AllThingsCellular, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 33.H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy, and A. Venkataramani. iPlane: An Information Plane for Distributed Services. In Proc.USENIX OSDI, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. 34.M. Mirza, J. Sommers, P. Barford, and X. Zhu. A Machine Learning Approach to TCP Throughput Prediction. In Proc.ACM SIGMETRICS, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. 35.K. Murphy and M. Dunham. PMTK: Probabilistic Modeling Toolkit. In Proc.NIPS, 2008.Google ScholarGoogle Scholar
  36. 36.A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and M. Welsh. Mobile Network Performance from User Devices: A Longitudinal, Multidimensional Analysis. In Proc.PAM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. 37.B. A. A. Nunes, K. Veenstra, W. Ballenthin, S. Lukin, and K. Obraczka. A Machine Learning Framework for TCP Round-trip Time Estimation. EURASIP Journal on Wireless Communications and Networking, 2014(1):1–22, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  38. 38.J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput: A Simple Model and its Empirical Validation. In Proc.ACM SIGCOMM, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. 39.F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, and J. Vanderplas. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. 40.V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta, and A. Akella. On the Treeness of Internet Latency and Bandwidth. ACM SIGMETRICS Performance Evaluation Review, 37(1):61–72, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. 41.G. Ridgeway. Generalized Boosted Models: A Guide to the GBM Package. Update, 1(1):1–12, 2007.Google ScholarGoogle Scholar
  42. 42.K. Salamatian and S. Vaton. Hidden Markov Modeling for Network Communication Channels. In Proc.ACM SIGMETRICS, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. 43.S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescape. Broadband Internet Performance: A View From the Gateway. In Proc.ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. 44.S. Tao and R. Guerin. Application-specific Path Switching: a Case Study for Streaming Video. In Proc.ACM Multimedia, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. 45.G. Tian and Y. Liu. Towards Agile and Smooth Video Adaptation in Dynamic HTTP Streaming. In Proc.ACM CoNEXT, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. 46.W. Wei, B. Wang, and D. Towsley. Continuous-time Hidden Markov Models for Network Performance Evaluation. Performance Evaluation, 49(14):129–146, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. 47.X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Proc.ACM SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. 48.X. Yin, V. Sekar, and B. Sinopoli. Toward a Principled Framework to Design Dynamic Adaptive Streaming Algorithms over HTTP. In Proc.ACM SIGCOMM HotNets, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. 49.Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the Constancy of Internet Path Properties. In Proc.ACM IMW, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. 50.X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin, J. Rexford, and R. K. Sinha. Can Accurate Predictions Improve Video Streaming in Cellular Networks? In Proc.ACM HotMobile, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGCOMM '16: Proceedings of the 2016 ACM SIGCOMM Conference
          August 2016
          645 pages
          ISBN:9781450341936
          DOI:10.1145/2934872

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 22 August 2016

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          SIGCOMM '16 Paper Acceptance Rate39of231submissions,17%Overall Acceptance Rate554of3,547submissions,16%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader