Skip to main content

2015 | OriginalPaper | Buchkapitel

9. Advances in Geofluvial Modeling: Methodologies and Applications

verfasst von : Yong G. Lai

Erschienen in: Advances in Water Resources Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stream bank erosion is an important form of channel change in alluvial environments; it should be accounted for in geomorphic studies, river restoration, dam removal, and channel maintenance projects. Recently, one-dimensional (1D) and two-dimensional (2D) flow and mobile-bed numerical models are becoming useful engineering tools for predicting channel morphological responses to stream modifications. Most, however, either ignore bank erosion or implement only simple ad hoc methods. A combined modeling of vertical and lateral fluvial processes in streams, i.e., geofluvial modeling, is important yet still at its research stage. In this chapter, advances in geofluvial modeling are presented. First, a literature review is provided in the area of geofluvial modeling. Second, important geofluvial processes are discussed as they need to be incorporated into models. Third, a recently developed 2D geofluvial model, SRH-2D, is described. SRH-2D incorporates processed-based bank erosion modules into a 2D mobile-bed module; it is developed with the primary objective of advancing the geofluvial modeling toward a practical engineering tool. Bank erosion modeling consists of a uniform retreat module and mechanistic failure module; both are suitable for uniform and multilayer banks with noncohesive or cohesive materials. The coupling techniques are developed that emphasize ease of use and model robustness (stability). Fourth and final, a number of laboratory and field cases are selected to validate and verify the geofluvial model; application cases are also presented to demonstrate the practical aspects of the model. It is found that the state-of-the-art 2D geofluvial modeling is becoming practical to assist project planning, design, and evaluation. SRH-2D can predict accurately for some streams, but only qualitatively for more complex streams.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossar
Alluvial streams
Refer to streams in which the bed and banks are made up of mobile sediment and/or soil. As a result, an alluvial stream is subject to continuous changes in planar forms and vertical shapes. They can assume a number of forms, e.g., meandering, braiding, wandering, and straight, based on the properties of their banks, the flows they experience, the local riparian ecology, and the amount, size, and type of sediment that they carry.
Basal cleanout
It is the process of removing the mass-failure-produced bank materials that may provide protections of bank toe.
Basal erosion
The term refers to direct removal of bank materials laterally by flowing water. In addition to shear force, basal erosion is also dependent on bank properties, bank protective materials, vegetation/debris, and soil characteristics.
Cantilever failure
It refers to the collapse of an overhanging bank block into a stream, often due to significant undercutting. The failure tends to occur on banks with composite layers of fine/coarse and/or cohesive/noncohesive materials.
Dry granular flow
It refers to a process in which individual sediment grains roll, slide, and bounce down the bank. It typically occurs on noncohesive banks near the angle of repose.
Geofluvial models
A geofluvial model refers to one that is capable of coupling in-channel flow and sediment-routing models with bank erosion and mass wasting algorithms.
Geomorphic processes
They may encompass a wide range of processes related to landforms and stream forms and the processes that shape them. In this report, they specifically refer to the processes that shape the streams.
Hydraulic fluvial processes
Refer to the processes that are responsible for bank retreat due to flowing water.
Mass failure
A type of bank failure resulting in a block of the bank sliding or toppling into the stream in a single event.
Mobile-bed models
Refer to numerical models that may be used to predict the sediment transport in streams, along with the associated streambed changes in shape.
Piping failure
It refers to the collapse of part of a bank due to seepage flows causing selective removal of bank layers. The failure is usually caused by preferential groundwater flows along inter-bedded saturated bank layers; the bank has lenses of noncohesive materials sandwiched between layers of finer cohesive materials.
Planar failure
It refers to the sliding and forward toppling of a deep-seated bank mass into the stream. Planar failure occurs often on steep, fine-grained cohesive banks.
Rotational failure
It refers to a deep-seated movement of bank material both downward and outward along a curved slip surface. After the failure, the upper surface of the slipped block is typically tilted inward toward the bank.
Shallow slide
It refers to a process in which a layer of material moves along a plane parallel to the bank surface. This failure often occurs on banks where soils have low and varied cohesion and the bank is moderately steep.
Wet earthflow
It refers to a process where the soil of a bank flows as a highly viscous liquid. The flowing material is extremely weak and easily removed by hydraulic fluvial process, even at lower flows.
Literatur
1.
Zurück zum Zitat Environment Agency. (1999). Waterway bank protection: A guide to erosion assessment and management (p. 235). Bristol: R and D Publication 11, Environment Agency. Environment Agency. (1999). Waterway bank protection: A guide to erosion assessment and management (p. 235). Bristol: R and D Publication 11, Environment Agency.
2.
Zurück zum Zitat Florsheim, J. L., Mount, J. F., & Chin, A. (2008). Bank erosion as a desirable attribute of rivers. BioScience, 58(6), 519–529.CrossRef Florsheim, J. L., Mount, J. F., & Chin, A. (2008). Bank erosion as a desirable attribute of rivers. BioScience, 58(6), 519–529.CrossRef
3.
Zurück zum Zitat van der Mark, C. F., van der Sligte, R. A. M., Becker, A., Mosselman, E., & Verheij, H. J. (2012). A method for systematic assessment of the morphodynamic response to removal of bank protection. River Flow 2012. International Conference on Fluvial Hydraulics, 5–7 Sep, San Jose, Costa Rica, Sep. van der Mark, C. F., van der Sligte, R. A. M., Becker, A., Mosselman, E., & Verheij, H. J. (2012). A method for systematic assessment of the morphodynamic response to removal of bank protection. River Flow 2012. International Conference on Fluvial Hydraulics, 5–7 Sep, San Jose, Costa Rica, Sep.
4.
Zurück zum Zitat Lai, Y. G. (2007). Erosion analysis upstream of the San Cacia diversion dam on the Rio Grande. Technical Report, Technical Service Center, Bureau of Reclamation, Denver CO. Lai, Y. G. (2007). Erosion analysis upstream of the San Cacia diversion dam on the Rio Grande. Technical Report, Technical Service Center, Bureau of Reclamation, Denver CO.
5.
Zurück zum Zitat Wilkin, D. C., & Hebel, S. J. (1982). Erosion, redeposition, and delivery of sediment to Midwestern streams. Water Resources Research, 18(4), 1278–1282.CrossRef Wilkin, D. C., & Hebel, S. J. (1982). Erosion, redeposition, and delivery of sediment to Midwestern streams. Water Resources Research, 18(4), 1278–1282.CrossRef
6.
Zurück zum Zitat Simon, A., Rinaldi, M., & Hadish, G. (1996). Channel evolution in the loess area of the Midwestern United States. Proceedings, Sixth Federal Interagency Sedimentation Conference, Las Vegas, III-86–93. Simon, A., Rinaldi, M., & Hadish, G. (1996). Channel evolution in the loess area of the Midwestern United States. Proceedings, Sixth Federal Interagency Sedimentation Conference, Las Vegas, III-86–93.
7.
Zurück zum Zitat Kronvang, B., Grant, R., & Laubel, A. L. (1997). Sediment and phosphorus export from a lowland catchment: Quantification of sources. Water Air and Soil Pollution, 99(1-4), 465–476.CrossRef Kronvang, B., Grant, R., & Laubel, A. L. (1997). Sediment and phosphorus export from a lowland catchment: Quantification of sources. Water Air and Soil Pollution, 99(1-4), 465–476.CrossRef
8.
Zurück zum Zitat Howard, A., Raine, S. R., & Titmarsh, G. (1998). The contribution of stream bank erosion to sediment loads in Gowrie Creek, Toowoomba. ASSI National Soils Conference, Brisbane, Vol. 2004, pp. 491–493. Howard, A., Raine, S. R., & Titmarsh, G. (1998). The contribution of stream bank erosion to sediment loads in Gowrie Creek, Toowoomba. ASSI National Soils Conference, Brisbane, Vol. 2004, pp. 491–493.
9.
Zurück zum Zitat Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modeling and Software, 18, 761–799.CrossRef Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modeling and Software, 18, 761–799.CrossRef
10.
Zurück zum Zitat Lai, Y. G. (2013). A Coupled Stream Bank Erosion and Two-Dimensional Mobile-Bed Model. Technical Report No. SRH-2013-07, Technical Service Center, Bureau of Reclamation, Denver, CO. Lai, Y. G. (2013). A Coupled Stream Bank Erosion and Two-Dimensional Mobile-Bed Model. Technical Report No. SRH-2013-07, Technical Service Center, Bureau of Reclamation, Denver, CO.
11.
Zurück zum Zitat Chen, D., & Duan, J. G. (2006). Modeling width adjustment in meandering channels. Journal of Hydrology, 321, 59–76.CrossRef Chen, D., & Duan, J. G. (2006). Modeling width adjustment in meandering channels. Journal of Hydrology, 321, 59–76.CrossRef
12.
Zurück zum Zitat Dunne, T., & Leopold, L. B. (1978). Water in environmental planning (p. 818). San Francisco: W.H. Freeman. Dunne, T., & Leopold, L. B. (1978). Water in environmental planning (p. 818). San Francisco: W.H. Freeman.
13.
Zurück zum Zitat Montgomery, D. R., & Gran, K. B. (2001). Downstream variations in the width of bedrock channels. Water Resources Research, 37(6), 1841–1846.CrossRef Montgomery, D. R., & Gran, K. B. (2001). Downstream variations in the width of bedrock channels. Water Resources Research, 37(6), 1841–1846.CrossRef
14.
Zurück zum Zitat Leopold, L. B., & Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications. US Geological Survey Professional Paper 252, US Geological Survey, p. 57. Leopold, L. B., & Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications. US Geological Survey Professional Paper 252, US Geological Survey, p. 57.
15.
Zurück zum Zitat Hey, R. D., & Thorne, C. R. (1986). Stable channels with mobile gravel beds. Journal of Hydraulic Engineering ASCE, 112, 671–689.CrossRef Hey, R. D., & Thorne, C. R. (1986). Stable channels with mobile gravel beds. Journal of Hydraulic Engineering ASCE, 112, 671–689.CrossRef
16.
Zurück zum Zitat Schumm, S. A. (1968). River adjustment to altered hydrologic regime-Murumbidgee river and paleochannels, Australia. U.S. Geological Survey Professional Paper 598. Schumm, S. A. (1968). River adjustment to altered hydrologic regime-Murumbidgee river and paleochannels, Australia. U.S. Geological Survey Professional Paper 598.
17.
Zurück zum Zitat Ferguson, R. I. (1973). Channel pattern and sediment type. Area, 5, 38–41. Ferguson, R. I. (1973). Channel pattern and sediment type. Area, 5, 38–41.
18.
Zurück zum Zitat Prosser, I., Rustomji, P., Young, B., Moran, C., & Hughes, A. (2001). Constructing river basin sediment budgets for the national land and water resources audit. CSIRO Land and Water Technical Report Number 15/01, CSIRO Land and Water, Canberra. Prosser, I., Rustomji, P., Young, B., Moran, C., & Hughes, A. (2001). Constructing river basin sediment budgets for the national land and water resources audit. CSIRO Land and Water Technical Report Number 15/01, CSIRO Land and Water, Canberra.
19.
Zurück zum Zitat Dickinson, W. T., Rudra, R. P., & Wall, G. J. (1989). Nomographs and software for field and bank erosion. Journal of Soil and Water Conservation, 44, 596–600. Dickinson, W. T., Rudra, R. P., & Wall, G. J. (1989). Nomographs and software for field and bank erosion. Journal of Soil and Water Conservation, 44, 596–600.
20.
Zurück zum Zitat Hooke, J. M. (1980). Magnitude and distribution of rates of river bank erosion. Earth Surface Processes and Landforms, 5, 143–157.CrossRef Hooke, J. M. (1980). Magnitude and distribution of rates of river bank erosion. Earth Surface Processes and Landforms, 5, 143–157.CrossRef
21.
Zurück zum Zitat Nanson, G. C., & Hickin, E. J. (1983). Channel migration and incision on the Beatton River. Journal of Hydraulic Engineering ASCE, 109, 227–327.CrossRef Nanson, G. C., & Hickin, E. J. (1983). Channel migration and incision on the Beatton River. Journal of Hydraulic Engineering ASCE, 109, 227–327.CrossRef
22.
Zurück zum Zitat Task Committee, A. S. C. E. (1998). River width adjustment. I: Process and mechanism. Journal of Hydraulic Engineering ASCE, 124(9), 881–902.CrossRef Task Committee, A. S. C. E. (1998). River width adjustment. I: Process and mechanism. Journal of Hydraulic Engineering ASCE, 124(9), 881–902.CrossRef
23.
Zurück zum Zitat Rosgen, D. L. (1996). Applied river morphology. Pagosa Springs: Wildland Hydrology Inc. Rosgen, D. L. (1996). Applied river morphology. Pagosa Springs: Wildland Hydrology Inc.
24.
Zurück zum Zitat Rosgen, D. L. (2001). A practical method of computing streambank erosion rate. Proceedings of the Seventh Federal Interagency Sedimentation Conference, 25–29 March 2001, Reno. Nevada, 2, 9–15. Rosgen, D. L. (2001). A practical method of computing streambank erosion rate. Proceedings of the Seventh Federal Interagency Sedimentation Conference, 25–29 March 2001, Reno. Nevada, 2, 9–15.
25.
Zurück zum Zitat Larsen, E. W. (1995). Mechanics and modeling of river meander migration. PhD Dissertation. Berkeley, CA, University of California. Larsen, E. W. (1995). Mechanics and modeling of river meander migration. PhD Dissertation. Berkeley, CA, University of California.
26.
Zurück zum Zitat Simon, A., Doyle, M., Kondolf, M., Shields, F. D. Jr., Rhoads, B., & McPhillips, M. (2007). Critical evaluation of how the Rosgen classification and associated “Natural Channel Design” methods fail to integrate and quantify fluvial processes and channel response. Journal of the American Water Resources Association, 43(5), 1117–1131.CrossRef Simon, A., Doyle, M., Kondolf, M., Shields, F. D. Jr., Rhoads, B., & McPhillips, M. (2007). Critical evaluation of how the Rosgen classification and associated “Natural Channel Design” methods fail to integrate and quantify fluvial processes and channel response. Journal of the American Water Resources Association, 43(5), 1117–1131.CrossRef
27.
Zurück zum Zitat Yang, C. T. (1976). Minimum unit stream power and fluvial hydraulics. Journal of Hydraulic Engineering ASCE, 102, 769–784. Yang, C. T. (1976). Minimum unit stream power and fluvial hydraulics. Journal of Hydraulic Engineering ASCE, 102, 769–784.
28.
Zurück zum Zitat Chang, H. H. (1979). Minimum stream power and river channel patterns. Journal of Hydrology, 41, 301–327.CrossRef Chang, H. H. (1979). Minimum stream power and river channel patterns. Journal of Hydrology, 41, 301–327.CrossRef
29.
Zurück zum Zitat Kirkby, M. J. (1977). Maximum sediment efficiency as a criterion for alluvial channels. In K. J. Gregory (Ed.), River channel changes (pp. 429–442). Chichester: Wiley. Kirkby, M. J. (1977). Maximum sediment efficiency as a criterion for alluvial channels. In K. J. Gregory (Ed.), River channel changes (pp. 429–442). Chichester: Wiley.
30.
Zurück zum Zitat White, W. R., Bettess, R., & Paris, E. (1982). Analytical approach to river regime. Journal of Hydraulic Engineering ASCE, 108, 1179–1193. White, W. R., Bettess, R., & Paris, E. (1982). Analytical approach to river regime. Journal of Hydraulic Engineering ASCE, 108, 1179–1193.
31.
Zurück zum Zitat Millar, R. G., & Quick, M. C. (1993). Effect of bank stability on geometry of gravel rivers. Journal of Hydraulic Engineering ASCE, 119(12), 1343–1363.CrossRef Millar, R. G., & Quick, M. C. (1993). Effect of bank stability on geometry of gravel rivers. Journal of Hydraulic Engineering ASCE, 119(12), 1343–1363.CrossRef
32.
Zurück zum Zitat Millar, R. G., & Quick, M. C. (1998). Stable width and depth of gravel bed rivers with cohesive banks. Journal of Hydraulic Engineering ASCE, 124(10), 1005–1013.CrossRef Millar, R. G., & Quick, M. C. (1998). Stable width and depth of gravel bed rivers with cohesive banks. Journal of Hydraulic Engineering ASCE, 124(10), 1005–1013.CrossRef
33.
Zurück zum Zitat Williams, G. P. (1978). Hydraulic geometry of river cross sections-theory of minimum variance. Professional Paper 1029. US Geological Survey. pp. 47. Williams, G. P. (1978). Hydraulic geometry of river cross sections-theory of minimum variance. Professional Paper 1029. US Geological Survey. pp. 47.
34.
Zurück zum Zitat Huang, H. Q., & Nanson, G. C. (2000). Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surface Processes and Landforms, 25, 1–16.CrossRef Huang, H. Q., & Nanson, G. C. (2000). Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surface Processes and Landforms, 25, 1–16.CrossRef
35.
Zurück zum Zitat Eaton, B. C., Church, M., & Millar, R. G. (2004). Rational regime model of alluvial channel morphology and response. Earth Surface Processes and Landforms, 29, 511–529.CrossRef Eaton, B. C., Church, M., & Millar, R. G. (2004). Rational regime model of alluvial channel morphology and response. Earth Surface Processes and Landforms, 29, 511–529.CrossRef
36.
Zurück zum Zitat Glover, R. E., & Florey, Q. L. (1951). Stable channel profiles (Vol. 235). Denver: US Bureau of Reclamation. Glover, R. E., & Florey, Q. L. (1951). Stable channel profiles (Vol. 235). Denver: US Bureau of Reclamation.
37.
Zurück zum Zitat Lane, E. W. (1955). Design of stable channels. Transmission of the ASCE, 120, 1234–1260. Lane, E. W. (1955). Design of stable channels. Transmission of the ASCE, 120, 1234–1260.
38.
Zurück zum Zitat Parker, G. (1978). Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. Journal of Fluid Mechanics, 89(1), 127–146.CrossRef Parker, G. (1978). Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. Journal of Fluid Mechanics, 89(1), 127–146.CrossRef
39.
Zurück zum Zitat Ikeda, S., Parker, G., & Kimura, Y. (1988). Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resources Research, 24(5), 713–722.CrossRef Ikeda, S., Parker, G., & Kimura, Y. (1988). Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resources Research, 24(5), 713–722.CrossRef
40.
Zurück zum Zitat Ikeda, S., & Izumi, N. (1990). Width and depth of self-formed straight gravel rivers with bank vegetation. Water Resources Research, 26(10), 2353–2364.CrossRef Ikeda, S., & Izumi, N. (1990). Width and depth of self-formed straight gravel rivers with bank vegetation. Water Resources Research, 26(10), 2353–2364.CrossRef
41.
Zurück zum Zitat Kovacs, A., & Parker, G. (1994). A new vectorial bedload formulation and its application to the time evolution of straight river channels. Journal of Fluid Mechanics, 267, 153–183.CrossRef Kovacs, A., & Parker, G. (1994). A new vectorial bedload formulation and its application to the time evolution of straight river channels. Journal of Fluid Mechanics, 267, 153–183.CrossRef
42.
Zurück zum Zitat Vigilar, G. G., & Diplas, P. (1997). Stable channels with mobile bed: Formulation and numerical solution. Journal of Hydraulic Engineering ASCE, 123(3), 189–199.CrossRef Vigilar, G. G., & Diplas, P. (1997). Stable channels with mobile bed: Formulation and numerical solution. Journal of Hydraulic Engineering ASCE, 123(3), 189–199.CrossRef
43.
Zurück zum Zitat Sun, T., Meakin, P., JØssang, T., & Schwarz, K. (1996). A simulation model for meandering rivers. Water Resources Research, 32, 2937–2954.CrossRef Sun, T., Meakin, P., JØssang, T., & Schwarz, K. (1996). A simulation model for meandering rivers. Water Resources Research, 32, 2937–2954.CrossRef
44.
Zurück zum Zitat ASCE Task Committee on Hydraulics, Bank Mechanics and Modeling of River Width Adjustment (1998). River width adjustment, II: Modeling. Journal of Hydraulic Engineering ASCE, 124(9), 903–917.CrossRef ASCE Task Committee on Hydraulics, Bank Mechanics and Modeling of River Width Adjustment (1998). River width adjustment, II: Modeling. Journal of Hydraulic Engineering ASCE, 124(9), 903–917.CrossRef
45.
Zurück zum Zitat Rinaldi, M., & Darby, S. E. (2008). Modelling river-bank-erosion processes and mass failure mechanisms: Progress towards fully coupled simulations. In H. Habersack, H. Piégay, & M. Rinaldi (Eds.), Gravel-bed rivers 6: From process understanding to river restoration; developments in earth surface processes 11 (pp. 213–239). Amsterdam: Elsevier. Rinaldi, M., & Darby, S. E. (2008). Modelling river-bank-erosion processes and mass failure mechanisms: Progress towards fully coupled simulations. In H. Habersack, H. Piégay, & M. Rinaldi (Eds.), Gravel-bed rivers 6: From process understanding to river restoration; developments in earth surface processes 11 (pp. 213–239). Amsterdam: Elsevier.
46.
Zurück zum Zitat Langendoen, E. J., & Simon, A. (2008). Modeling the evolution of incised streams. II: Streambank erosion. Journal of Hydraulic Engineering ASCE, 134(7), 905–915.CrossRef Langendoen, E. J., & Simon, A. (2008). Modeling the evolution of incised streams. II: Streambank erosion. Journal of Hydraulic Engineering ASCE, 134(7), 905–915.CrossRef
47.
Zurück zum Zitat Motta, D., Abad, J. D., Langendoen, E. J., & Garcia, M. H. (2012). A simplified 2D model for meander migration with physically-based bank evolution. Geomorphology, 163–164, 10–25.CrossRef Motta, D., Abad, J. D., Langendoen, E. J., & Garcia, M. H. (2012). A simplified 2D model for meander migration with physically-based bank evolution. Geomorphology, 163–164, 10–25.CrossRef
48.
Zurück zum Zitat Hasegawa, K. (1977). Computer simulation of the gradual migration of meandering channels. Proceedings of the Hokkaido Branch. Japan Society of Civil Engineering, pp. 197–202 (in Japanese). Hasegawa, K. (1977). Computer simulation of the gradual migration of meandering channels. Proceedings of the Hokkaido Branch. Japan Society of Civil Engineering, pp. 197–202 (in Japanese).
49.
Zurück zum Zitat Ikeda, S., Parker, G., & Sawai, K. (1981). Bend theory of river meanders. Part I. Linear development. Journal of Fluid Mechanics, 112, 363–377.CrossRef Ikeda, S., Parker, G., & Sawai, K. (1981). Bend theory of river meanders. Part I. Linear development. Journal of Fluid Mechanics, 112, 363–377.CrossRef
50.
Zurück zum Zitat Parker, G. (1983). Theory of meander bend deformation. In C. M. Elliott (Ed.), River Meandering Proceedings of ASCE River’83 Conference, ASCE, pp. 722–731. Parker, G. (1983). Theory of meander bend deformation. In C. M. Elliott (Ed.), River Meandering Proceedings of ASCE River’83 Conference, ASCE, pp. 722–731.
51.
Zurück zum Zitat Blondeaux, P., & Seminara, G. (1985). A unified bar-bend theory of river meanders. Journal of Fluid Mechanics, 157, 449–470.CrossRef Blondeaux, P., & Seminara, G. (1985). A unified bar-bend theory of river meanders. Journal of Fluid Mechanics, 157, 449–470.CrossRef
52.
Zurück zum Zitat Johannesson, H., & Parker, G. (1989). Velocity redistribution in meandering rivers. Journal of Hydraulic Engineering ASCE, 115(8), 1019–1039.CrossRef Johannesson, H., & Parker, G. (1989). Velocity redistribution in meandering rivers. Journal of Hydraulic Engineering ASCE, 115(8), 1019–1039.CrossRef
53.
Zurück zum Zitat Odgaard, A. J. (1989). River meander model I development. Journal of Hydraulic Engineering ASCE, 115(11), 1433–1450.CrossRef Odgaard, A. J. (1989). River meander model I development. Journal of Hydraulic Engineering ASCE, 115(11), 1433–1450.CrossRef
54.
Zurück zum Zitat Sun, T., Meakin, P., & JØssang, T. (2001a). Meander migration and the lateral tilting of floodplains. Water Resources Research, 37(5), 1485–1502. Sun, T., Meakin, P., & JØssang, T. (2001a). Meander migration and the lateral tilting of floodplains. Water Resources Research, 37(5), 1485–1502.
55.
Zurück zum Zitat Sun, T., Meakin, P., & JØssang, T. (2001b). A computer model for meandering rivers with multiple bed load sediment sizes I theory. Water Resources Research, 37(8), 2227–2241. Sun, T., Meakin, P., & JØssang, T. (2001b). A computer model for meandering rivers with multiple bed load sediment sizes I theory. Water Resources Research, 37(8), 2227–2241.
56.
Zurück zum Zitat Zolezzi, G., & Seminara, G. (2001). Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Journal of Fluid Mechanics, 438, 183–211.CrossRef Zolezzi, G., & Seminara, G. (2001). Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Journal of Fluid Mechanics, 438, 183–211.CrossRef
57.
Zurück zum Zitat Lancaster, S. T., & Bras, R. L. (2002). A simple model of river meandering and its comparison to natural channels. Hydrological Processes, 16(1), 1–26.CrossRef Lancaster, S. T., & Bras, R. L. (2002). A simple model of river meandering and its comparison to natural channels. Hydrological Processes, 16(1), 1–26.CrossRef
58.
Zurück zum Zitat Rüther, N., & Olsen, N. R. B. (2007). Modelling free-forming meander evolution in a laboratory channel using three-dimensional computational fluid dynamics. Geomorphology, 89(3-4), 308–319.CrossRef Rüther, N., & Olsen, N. R. B. (2007). Modelling free-forming meander evolution in a laboratory channel using three-dimensional computational fluid dynamics. Geomorphology, 89(3-4), 308–319.CrossRef
59.
Zurück zum Zitat Crosato, A. (1989). Meander migration prediction. Excerpta, GNI, 4. Libreria Progetto (Vol. 4, pp. 169–198). Padova: GNI, Gruppo Nazionale Idraulica. Crosato, A. (1989). Meander migration prediction. Excerpta, GNI, 4. Libreria Progetto (Vol. 4, pp. 169–198). Padova: GNI, Gruppo Nazionale Idraulica.
60.
Zurück zum Zitat Mosselman, E. (1998). Mathematical modeling of morphological processes in rivers with erodible cohesive banks. Communications on Hydraulic and Geotechnical Engineering, 92. Delft: Delft University of Technology. Mosselman, E. (1998). Mathematical modeling of morphological processes in rivers with erodible cohesive banks. Communications on Hydraulic and Geotechnical Engineering, 92. Delft: Delft University of Technology.
61.
Zurück zum Zitat Spruyt, A., van der Sligte, R. A. M., van der Mark, C. F., Sieben, A., & Mosselman, E. (2012). Development of a rapid assessment tool for river bank erosion. River Flow 2012, International Conference on Fluvial Hydraulics, Sept. 5-7, 2012, San Jose, Costa Rica. Spruyt, A., van der Sligte, R. A. M., van der Mark, C. F., Sieben, A., & Mosselman, E. (2012). Development of a rapid assessment tool for river bank erosion. River Flow 2012, International Conference on Fluvial Hydraulics, Sept. 5-7, 2012, San Jose, Costa Rica.
62.
Zurück zum Zitat Osman, M. A., & Thorne, C. R. (1988). Riverbank stability analysis: I. Theory. Journal of Hydraulic Engineering ASCE, 114(2), 134–150.CrossRef Osman, M. A., & Thorne, C. R. (1988). Riverbank stability analysis: I. Theory. Journal of Hydraulic Engineering ASCE, 114(2), 134–150.CrossRef
63.
Zurück zum Zitat Thorne, C. R., & Abt, S. R. (1993). Analysis of riverbank stability due to toe scour and lateral erosion. Earth surface Processes and Landforms, 18, 835–843.CrossRef Thorne, C. R., & Abt, S. R. (1993). Analysis of riverbank stability due to toe scour and lateral erosion. Earth surface Processes and Landforms, 18, 835–843.CrossRef
64.
Zurück zum Zitat Darby, S. E., & Thorne, C. R. (1996a). Numerical simulation of widening and bed deformation of straight sand-bed rivers, I: Model development. Journal of Hydraulic Engineering ASCE, 122, 184–193. Darby, S. E., & Thorne, C. R. (1996a). Numerical simulation of widening and bed deformation of straight sand-bed rivers, I: Model development. Journal of Hydraulic Engineering ASCE, 122, 184–193.
65.
Zurück zum Zitat Darby, S. E., & Thorne, C. R. (1996b). Stability analysis for steep, eroding, cohesive riverbanks. Journal of Hydraulic Engineering ASCE, 122, 443–454. Darby, S. E., & Thorne, C. R. (1996b). Stability analysis for steep, eroding, cohesive riverbanks. Journal of Hydraulic Engineering ASCE, 122, 443–454.
66.
Zurück zum Zitat Darby, S. E., Gessler, D., & Thorne, C. R. (2000). Computer program for stability analysis of steep, cohesive riverbanks. Earth Surface Process and Landforms, 25(2), 175–190.CrossRef Darby, S. E., Gessler, D., & Thorne, C. R. (2000). Computer program for stability analysis of steep, cohesive riverbanks. Earth Surface Process and Landforms, 25(2), 175–190.CrossRef
67.
Zurück zum Zitat Simon, A., Curini, A., Darby, S. E., & Langendoen, E. J. (1999). Streambank mechanics and the role of bank and near-bank processes in incised channels. In S. E. Darby & A. Simon (Eds.), Incised river channels (pp. 123–152). Chichester: Wiley. Simon, A., Curini, A., Darby, S. E., & Langendoen, E. J. (1999). Streambank mechanics and the role of bank and near-bank processes in incised channels. In S. E. Darby & A. Simon (Eds.), Incised river channels (pp. 123–152). Chichester: Wiley.
68.
Zurück zum Zitat Rinaldi, M., & Casagli, N. (1999). Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures: The Sieve River (Italy). Geomorphology, 26(4), 253–277.CrossRef Rinaldi, M., & Casagli, N. (1999). Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures: The Sieve River (Italy). Geomorphology, 26(4), 253–277.CrossRef
69.
Zurück zum Zitat Dapporto, S., Rinaldi, M., Casagli, N., & Vannocci, P. (2003). Mechanisms of riverbank failure along the Arno River, Central Italy. Earth Surface Process and Landforms, 28, 1303–1323.CrossRef Dapporto, S., Rinaldi, M., Casagli, N., & Vannocci, P. (2003). Mechanisms of riverbank failure along the Arno River, Central Italy. Earth Surface Process and Landforms, 28, 1303–1323.CrossRef
70.
Zurück zum Zitat Pollen, N., & Simon, A. (2005). Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research, 41(7), W0702510. doi:10.1029/2004WR003801. Pollen, N., & Simon, A. (2005). Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research, 41(7), W0702510. doi:10.1029/2004WR003801.
71.
Zurück zum Zitat Simon, A., Curini, A., Darby, S. E., & Langendoen, E. J. (2000). Bank and near-bank processes in an incised channel. Geomorphology, 35(3-4), 193–217.CrossRef Simon, A., Curini, A., Darby, S. E., & Langendoen, E. J. (2000). Bank and near-bank processes in an incised channel. Geomorphology, 35(3-4), 193–217.CrossRef
72.
Zurück zum Zitat Langendoen, E. J. (2000). CONCEPTS—Conservational channel evolution and pollutant transport system. Research Report 16, USDA Agricultural Research Service National Sedimentation Laboratory, Oxford, MS. Langendoen, E. J. (2000). CONCEPTS—Conservational channel evolution and pollutant transport system. Research Report 16, USDA Agricultural Research Service National Sedimentation Laboratory, Oxford, MS.
73.
Zurück zum Zitat Langendoen, E. J., Wells, R. R., Thomas, R. E., Simon, A., & Bingner, R. L. (2009). Modeling the evolution of incised streams. III: Model application. Journal of Hydraulic Engineering ASCE, 135(6), 476–486.CrossRef Langendoen, E. J., Wells, R. R., Thomas, R. E., Simon, A., & Bingner, R. L. (2009). Modeling the evolution of incised streams. III: Model application. Journal of Hydraulic Engineering ASCE, 135(6), 476–486.CrossRef
74.
Zurück zum Zitat Darby, S. E., Rinaldi, M., & Dapporto, S. (2007). Coupled simulations of fluvial erosion and mass wasting for cohesive river banks. Journal of Geophysical Research, 112(F03022). doi:10.1029/2006JF000722. Darby, S. E., Rinaldi, M., & Dapporto, S. (2007). Coupled simulations of fluvial erosion and mass wasting for cohesive river banks. Journal of Geophysical Research, 112(F03022). doi:10.1029/2006JF000722.
75.
Zurück zum Zitat Rinaldi, M., & Darby, S. E. (2008). Modelling river-bank-erosion processes and mass failure mechanisms: Progress towards fully coupled simulations. In H. Habersack, H. Piégay, & M. Rinaldi (Eds.), Gravel-bed Rivers 6: From process understanding to river restoration; developments in earth surface processes 11 (pp. 213–239). Amsterdam: Elsevier. Rinaldi, M., & Darby, S. E. (2008). Modelling river-bank-erosion processes and mass failure mechanisms: Progress towards fully coupled simulations. In H. Habersack, H. Piégay, & M. Rinaldi (Eds.), Gravel-bed Rivers 6: From process understanding to river restoration; developments in earth surface processes 11 (pp. 213–239). Amsterdam: Elsevier.
76.
Zurück zum Zitat Rinaldi, M., Mengoni, B., Luppi, L., Darby, S. E., & Mosselman, E. (2008). Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resources Research, 44(W09428). doi:10.1029/2008WR007008. Rinaldi, M., Mengoni, B., Luppi, L., Darby, S. E., & Mosselman, E. (2008). Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resources Research, 44(W09428). doi:10.1029/2008WR007008.
77.
Zurück zum Zitat Luppi, L., Rinaldi, M., Teruggi, L. B., Darby, S. E., & Nardi, L. (2009). Monitoring and numerical modelling of riverbank erosion processes: A case study along the Cecina River (Central Italy). Earth Surface Processes and Landforms, 34, 530–546. doi:10.1002/esp.1754.CrossRef Luppi, L., Rinaldi, M., Teruggi, L. B., Darby, S. E., & Nardi, L. (2009). Monitoring and numerical modelling of riverbank erosion processes: A case study along the Cecina River (Central Italy). Earth Surface Processes and Landforms, 34, 530–546. doi:10.1002/esp.1754.CrossRef
78.
Zurück zum Zitat Darby, S. E., Alabyan, A. M., & van de Wiel, M. J. (2002). Numerical simulation of bank erosion and channel migration in meandering rivers. Water Resources Research, 38, 1163–1183.CrossRef Darby, S. E., Alabyan, A. M., & van de Wiel, M. J. (2002). Numerical simulation of bank erosion and channel migration in meandering rivers. Water Resources Research, 38, 1163–1183.CrossRef
79.
Zurück zum Zitat Nagata, N., Hosoda, T., & Muramoto, Y. (2000). Numerical analysis of river channel processes with bank erosion. Journal of Hydraulic Engineering ASCE, 126(4), 243–252.CrossRef Nagata, N., Hosoda, T., & Muramoto, Y. (2000). Numerical analysis of river channel processes with bank erosion. Journal of Hydraulic Engineering ASCE, 126(4), 243–252.CrossRef
80.
Zurück zum Zitat Duan, G., Wang, S. S. Y., & Jia, Y. (2001). The applications of the enhanced CCHE2D model to study the alluvial channel migration processes. Journal of Hydraulic Research, IAHR, 39, 469–480.CrossRef Duan, G., Wang, S. S. Y., & Jia, Y. (2001). The applications of the enhanced CCHE2D model to study the alluvial channel migration processes. Journal of Hydraulic Research, IAHR, 39, 469–480.CrossRef
81.
Zurück zum Zitat Simon, A., Pollen-Bankhead, N., & Thomas, R. E. (2011). Development and application of a deterministic bank stability and toe erosion model for stream restoration. In Stream restoration in dynamic fluvial systems: Scientific approaches, analyses, and tools. American Geophysical Union, Geophysical Monograph Series 194 (pp. 453–474). Simon, A., Pollen-Bankhead, N., & Thomas, R. E. (2011). Development and application of a deterministic bank stability and toe erosion model for stream restoration. In Stream restoration in dynamic fluvial systems: Scientific approaches, analyses, and tools. American Geophysical Union, Geophysical Monograph Series 194 (pp. 453–474).
82.
Zurück zum Zitat Darby, S. E., Spyropoulos, M., Bressloff, & Rinaldi, M. (2004). Fluvial bank erosion in meanders: A CFD modelling approach. In Proceedings 5th International Symposium on Ecohydraulics, Madrid, Spain 12–17 Sept 2004, International Association of Hydraulic Engineering and Research, pp. 268–273. Darby, S. E., Spyropoulos, M., Bressloff, & Rinaldi, M. (2004). Fluvial bank erosion in meanders: A CFD modelling approach. In Proceedings 5th International Symposium on Ecohydraulics, Madrid, Spain 12–17 Sept 2004, International Association of Hydraulic Engineering and Research, pp. 268–273.
83.
Zurück zum Zitat Olsen, N. R. B. (2003). Three-dimensional CFD modeling of self-forming meandering channel. Journal of Hydraulic Engineering ASCE, 129(5), 366–372.CrossRef Olsen, N. R. B. (2003). Three-dimensional CFD modeling of self-forming meandering channel. Journal of Hydraulic Engineering ASCE, 129(5), 366–372.CrossRef
84.
Zurück zum Zitat Lai, Y. G., Thomas, R., Ozeren, Y., Simon, A., Greimann, B. P., & Wu, K. (2014). Modeling of multi-layer cohesive bank erosion with a coupled bank stability and mobile-bed model. Under review by Geomorphology. Lai, Y. G., Thomas, R., Ozeren, Y., Simon, A., Greimann, B. P., & Wu, K. (2014). Modeling of multi-layer cohesive bank erosion with a coupled bank stability and mobile-bed model. Under review by Geomorphology.
85.
Zurück zum Zitat Lai, Y. G., & Wu, K. (2013). Modeling of vertical and lateral erosion on the Chosui River, Taiwan. ASCE World Environmental and Water Resources Congress, Cincinnati, Ohio, 19–23 May. Lai, Y. G., & Wu, K. (2013). Modeling of vertical and lateral erosion on the Chosui River, Taiwan. ASCE World Environmental and Water Resources Congress, Cincinnati, Ohio, 19–23 May.
86.
Zurück zum Zitat Lai, Y. G., Thomas, R., Ozeren, Y., Simon, A., Greimann, B. P., & Wu, K. (2012). Coupling a two-dimensional model with a deterministic bank stability model. Albuquerque, New Mexico: ASCE World Environmental and Water Resources Congress, May 20–24. Lai, Y. G., Thomas, R., Ozeren, Y., Simon, A., Greimann, B. P., & Wu, K. (2012). Coupling a two-dimensional model with a deterministic bank stability model. Albuquerque, New Mexico: ASCE World Environmental and Water Resources Congress, May 20–24.
87.
Zurück zum Zitat Lai, Y. G., Greimann, B. P., & Wu, K. (2012). Modeling bank erosion in fluvial channels. Costa Rica: 2012 River Flow, Sept 3–8. Lai, Y. G., Greimann, B. P., & Wu, K. (2012). Modeling bank erosion in fluvial channels. Costa Rica: 2012 River Flow, Sept 3–8.
88.
Zurück zum Zitat Yang, C. T. (2014). Sediment transport, river morphology, and river engineering. In L. K. Wang & C. T. Yang (Eds.), Modern water resources engineering: Handbook of environmental engineering (Vol. 15, pp. 339–372, Chapter 6). NYC: Humana Press.CrossRef Yang, C. T. (2014). Sediment transport, river morphology, and river engineering. In L. K. Wang & C. T. Yang (Eds.), Modern water resources engineering: Handbook of environmental engineering (Vol. 15, pp. 339–372, Chapter 6). NYC: Humana Press.CrossRef
89.
Zurück zum Zitat Watson, A. J., & Basher, L. R. (2006). Stream bank erosion: A review of processes of bank failure, measurement and assessment techniques, and modeling approaches. Landcare ICM Report No. 2005-2006/01, Landcare Research, Lincoln, Private Bag 6, Nelson, New Zealand. Watson, A. J., & Basher, L. R. (2006). Stream bank erosion: A review of processes of bank failure, measurement and assessment techniques, and modeling approaches. Landcare ICM Report No. 2005-2006/01, Landcare Research, Lincoln, Private Bag 6, Nelson, New Zealand.
90.
Zurück zum Zitat Thorne, C. R., & Tovey, N. K. (1981). Stability of composite river banks. Earth Surface Processes and Landforms, 6, 469–484.CrossRef Thorne, C. R., & Tovey, N. K. (1981). Stability of composite river banks. Earth Surface Processes and Landforms, 6, 469–484.CrossRef
91.
Zurück zum Zitat Lawler, D. M., Thorne, C. R., & Hooke, J. M. (1997). Bank erosion and instability. In C. R. Thorne, R. D. Hey, & M. D. Newson (Eds.), Applied fluvial geomorphology for river engineering and management (pp. 137–172). Chichester: Wiley. Lawler, D. M., Thorne, C. R., & Hooke, J. M. (1997). Bank erosion and instability. In C. R. Thorne, R. D. Hey, & M. D. Newson (Eds.), Applied fluvial geomorphology for river engineering and management (pp. 137–172). Chichester: Wiley.
92.
Zurück zum Zitat Fox, G. A., & Wilson, G. V. (2010). The role of subsurface flow in hillslope and streambank erosion: A review of status and research needs. Soil Science Society of America Journal, 74(3), 717–733.CrossRef Fox, G. A., & Wilson, G. V. (2010). The role of subsurface flow in hillslope and streambank erosion: A review of status and research needs. Soil Science Society of America Journal, 74(3), 717–733.CrossRef
93.
Zurück zum Zitat Thorne, C. R. (1982). Processes and mechanisms of river bank erosion. In R. D. Hey, J. C. Bathurst & C. R. Thorne (Eds.), Gravel-bed rivers (pp. 227–271). Chichester: Wiley. Thorne, C. R. (1982). Processes and mechanisms of river bank erosion. In R. D. Hey, J. C. Bathurst & C. R. Thorne (Eds.), Gravel-bed rivers (pp. 227–271). Chichester: Wiley.
94.
Zurück zum Zitat Thorne, C. R., & Osman, A. M. (1988). Riverbank stability analysis, II: Applications. Journal of Hydraulic Engineering ASCE, 114(2), 151–172.CrossRef Thorne, C. R., & Osman, A. M. (1988). Riverbank stability analysis, II: Applications. Journal of Hydraulic Engineering ASCE, 114(2), 151–172.CrossRef
95.
Zurück zum Zitat Carson, M. A., & Kirkby, M. J. (1972). Hillslope form and process. Cambridge: Cambridge University Press. Carson, M. A., & Kirkby, M. J. (1972). Hillslope form and process. Cambridge: Cambridge University Press.
96.
Zurück zum Zitat Thorne, C. R. (1978). Processes of bank erosion in river channels. Ph.D. thesis, University of East Anglia, UK. Thorne, C. R. (1978). Processes of bank erosion in river channels. Ph.D. thesis, University of East Anglia, UK.
97.
Zurück zum Zitat Lai, Y. G. (2014). SRH-2D manual: Mobile-bed modeling. Denver: Technical Service Center, Bureau of Reclamation. Lai, Y. G. (2014). SRH-2D manual: Mobile-bed modeling. Denver: Technical Service Center, Bureau of Reclamation.
98.
Zurück zum Zitat Lai, Y. G., & Randle, T. J. (2007). Bed evolution and bank erosion analysis of the Palo Verde Dam on the Lower Colorado River. Technical Report, Technical Service Center, Bureau of Reclamation, Denver, CO. Lai, Y. G., & Randle, T. J. (2007). Bed evolution and bank erosion analysis of the Palo Verde Dam on the Lower Colorado River. Technical Report, Technical Service Center, Bureau of Reclamation, Denver, CO.
99.
Zurück zum Zitat Greimann, B. P., Lai, Y. G., & Huang, J. (2008). Two-dimensional total sediment load model equations. Journal of Hydraulic Engineering ASCE, 134(8), 1142–1146.CrossRef Greimann, B. P., Lai, Y. G., & Huang, J. (2008). Two-dimensional total sediment load model equations. Journal of Hydraulic Engineering ASCE, 134(8), 1142–1146.CrossRef
100.
Zurück zum Zitat Lai, Y. G., & Greimann, B. P. (2008). Modeling of erosion and deposition at meandering channels. World Environmental & Water Resources Congress, 12–16 May 2008, Honolulu, Hawaii. Lai, Y. G., & Greimann, B. P. (2008). Modeling of erosion and deposition at meandering channels. World Environmental & Water Resources Congress, 12–16 May 2008, Honolulu, Hawaii.
101.
Zurück zum Zitat Lai, Y. G., & Greimann, B. P. (2010). Predicting contraction scour with a two-dimensional depth-averaged model. Journal of Hydraulic Research, IAHR, 48(3), 383–387.CrossRef Lai, Y. G., & Greimann, B. P. (2010). Predicting contraction scour with a two-dimensional depth-averaged model. Journal of Hydraulic Research, IAHR, 48(3), 383–387.CrossRef
102.
Zurück zum Zitat Lai, Y. G. (2011). Prediction of channel morphology upstream of Elephant Butte Reservoir on the Middle Rio Grande. Technical Report No. SRH-2011-04. Technical Service Center, Bureau of Reclamation, Denver, CO. Lai, Y. G. (2011). Prediction of channel morphology upstream of Elephant Butte Reservoir on the Middle Rio Grande. Technical Report No. SRH-2011-04. Technical Service Center, Bureau of Reclamation, Denver, CO.
103.
Zurück zum Zitat Lai, Y. G., Greimann, B. P., & Wu, K. (2011). Soft bedrock erosion modeling with a two-dimensional depth-averaged model. Journal of Hydraulic Engineering ASCE, 137(8), 804–814.CrossRef Lai, Y. G., Greimann, B. P., & Wu, K. (2011). Soft bedrock erosion modeling with a two-dimensional depth-averaged model. Journal of Hydraulic Engineering ASCE, 137(8), 804–814.CrossRef
104.
Zurück zum Zitat Lai, Y. G. (2008). SRH-2D theory and user’s manual version 2.0. Denver: Technical Service Center, Bureau of Reclamation. Lai, Y. G. (2008). SRH-2D theory and user’s manual version 2.0. Denver: Technical Service Center, Bureau of Reclamation.
105.
Zurück zum Zitat Lai, Y. G. (2010). Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh. Journal of Hydraulic Engineering ASCEI, 136(1), 12–23.CrossRef Lai, Y. G. (2010). Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh. Journal of Hydraulic Engineering ASCEI, 136(1), 12–23.CrossRef
106.
Zurück zum Zitat Lai, Y. G., Weber, L. J., & Patel, V. C. (2003). Non-hydrostatic three-dimensional method for hydraulic flow simulation—Part I: Formulation and verification. Journal of Hydraulic Engineering ASCE, 129(3), 196–205.CrossRef Lai, Y. G., Weber, L. J., & Patel, V. C. (2003). Non-hydrostatic three-dimensional method for hydraulic flow simulation—Part I: Formulation and verification. Journal of Hydraulic Engineering ASCE, 129(3), 196–205.CrossRef
107.
Zurück zum Zitat Hasegawa, K. (1981). Bank-erosion discharge based on a nonequilibrium theory. Proceeding of the JSCE, Tokyo, 316, 37–50 (in Japanese). Hasegawa, K. (1981). Bank-erosion discharge based on a nonequilibrium theory. Proceeding of the JSCE, Tokyo, 316, 37–50 (in Japanese).
108.
Zurück zum Zitat Partheniades, E. (1965). Erosion and deposition of cohesive soils. Journal of the Hydraulics Division ASCE, 91(1), 105–139. Partheniades, E. (1965). Erosion and deposition of cohesive soils. Journal of the Hydraulics Division ASCE, 91(1), 105–139.
109.
Zurück zum Zitat Ariathurai, R., & Arulanandan, K. (1978). Erosion rates of cohesive soils. Journal of Hydraulic Engineering ASCE, 104(2), 279–283. Ariathurai, R., & Arulanandan, K. (1978). Erosion rates of cohesive soils. Journal of Hydraulic Engineering ASCE, 104(2), 279–283.
110.
Zurück zum Zitat Guo, J., & Julien, P. Y. (2005). Shear stress in smooth rectangular open-channel flows. Journal of Hydraulic Engineering ASCE, 131(1), 30–37.CrossRef Guo, J., & Julien, P. Y. (2005). Shear stress in smooth rectangular open-channel flows. Journal of Hydraulic Engineering ASCE, 131(1), 30–37.CrossRef
111.
Zurück zum Zitat Kean, J. W., & Smith, J. D. (2006a). Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences. Journal of Geophysical Research, 111(F04009). doi:10.1029/2006JF000467. Kean, J. W., & Smith, J. D. (2006a). Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences. Journal of Geophysical Research, 111(F04009). doi:10.1029/2006JF000467.
112.
Zurück zum Zitat Kean, J. W., & Smith, J. D. (2006b). Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences. Journal of Geophysical Research, 111(F04010). doi:10.1029/2006JF000490. Kean, J. W., & Smith, J. D. (2006b). Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences. Journal of Geophysical Research, 111(F04010). doi:10.1029/2006JF000490.
113.
Zurück zum Zitat Khodashenas, S. R., El Kadi Abderrezzak, K., & Paquier, A. (2008). Boundary shear stress in open channel flow: A comparison among six methods. Journal of Hydraulic Research, 46(5), 598–609.CrossRef Khodashenas, S. R., El Kadi Abderrezzak, K., & Paquier, A. (2008). Boundary shear stress in open channel flow: A comparison among six methods. Journal of Hydraulic Research, 46(5), 598–609.CrossRef
114.
Zurück zum Zitat Kean, J. W., Kuhnle, R. A., Smith, J. D., Alonso, C. V., & Langendoen, E. J. (2009). Test of a method to calculate near-bank velocity and boundary shear stress. Journal of Hydraulic Engineering ASCE, 135(7), 588–601.CrossRef Kean, J. W., Kuhnle, R. A., Smith, J. D., Alonso, C. V., & Langendoen, E. J. (2009). Test of a method to calculate near-bank velocity and boundary shear stress. Journal of Hydraulic Engineering ASCE, 135(7), 588–601.CrossRef
115.
Zurück zum Zitat Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15, 313–321.CrossRef Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15, 313–321.CrossRef
116.
Zurück zum Zitat Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics of unsaturated soils. New York: Wiley.CrossRef Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics of unsaturated soils. New York: Wiley.CrossRef
117.
Zurück zum Zitat Huang, Y. H. (1983). Stability analysis of earth slopes. New York: Van Nostrand Reinhold Company.CrossRef Huang, Y. H. (1983). Stability analysis of earth slopes. New York: Van Nostrand Reinhold Company.CrossRef
118.
Zurück zum Zitat Pizzuto, J. E. (1990). Numerical simulation of gravel river widening. Water Resources Research, 26, 1971–1980.CrossRef Pizzuto, J. E. (1990). Numerical simulation of gravel river widening. Water Resources Research, 26, 1971–1980.CrossRef
119.
Zurück zum Zitat Darby, S. E., & Delbono, I. (2002). A model of equilibrium bed topography for meander bends with erodible banks. Earth Surface Process and Landforms, 27(10), 1057–1085.CrossRef Darby, S. E., & Delbono, I. (2002). A model of equilibrium bed topography for meander bends with erodible banks. Earth Surface Process and Landforms, 27(10), 1057–1085.CrossRef
120.
Zurück zum Zitat Lai, Y. G., & Przekwas, A. J. (1994). A finite-volume method for fluid flow simulations with moving boundaries. Computational Fluid Dynamics, 2, 19–40.CrossRef Lai, Y. G., & Przekwas, A. J. (1994). A finite-volume method for fluid flow simulations with moving boundaries. Computational Fluid Dynamics, 2, 19–40.CrossRef
121.
Zurück zum Zitat Kassem, A. A., & Chaudhry, M. H. (1998). Comparison of coupled and semicoupled numerical models for alluvial channels. Journal of Hydraulic Engineering ASCE, 124(8), 794–802.CrossRef Kassem, A. A., & Chaudhry, M. H. (1998). Comparison of coupled and semicoupled numerical models for alluvial channels. Journal of Hydraulic Engineering ASCE, 124(8), 794–802.CrossRef
122.
Zurück zum Zitat Engelund, F., & Hansen, E. (1972). A monograph on sediment transport in alluvial streams. Copenhagen: Teknish Forlag, Technical Press. Engelund, F., & Hansen, E. (1972). A monograph on sediment transport in alluvial streams. Copenhagen: Teknish Forlag, Technical Press.
123.
Zurück zum Zitat Phillips, B. C., & Sutherland, A. J. (1989). Spatial lag effects in bedload sediment transport. Journal of Hydraulic Research, 27(1), 115–133.CrossRef Phillips, B. C., & Sutherland, A. J. (1989). Spatial lag effects in bedload sediment transport. Journal of Hydraulic Research, 27(1), 115–133.CrossRef
124.
Zurück zum Zitat Grissinger, E. H., & Murphey, J. B. (1983). Present channel stability and late quaternary valley deposits in northern Mississippi. In J. D. Collingson & J. Lewin (Eds.), Modern and Ancient Fluvial Systems (pp. 241–250). Oxford: Blackwell Scientific.CrossRef Grissinger, E. H., & Murphey, J. B. (1983). Present channel stability and late quaternary valley deposits in northern Mississippi. In J. D. Collingson & J. Lewin (Eds.), Modern and Ancient Fluvial Systems (pp. 241–250). Oxford: Blackwell Scientific.CrossRef
125.
Zurück zum Zitat Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering ASCE, 129(2), 120–128.CrossRef Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering ASCE, 129(2), 120–128.CrossRef
126.
Zurück zum Zitat Hanson, G. J. (1990). Surface erodibility of earthen channels at high stress, Part II—developing an in situ testing device. Transactions of the American Society of Agricultural Engineers, 33(1), 132–137.CrossRef Hanson, G. J. (1990). Surface erodibility of earthen channels at high stress, Part II—developing an in situ testing device. Transactions of the American Society of Agricultural Engineers, 33(1), 132–137.CrossRef
127.
Zurück zum Zitat Hanson, G. J., & Simon, A. (2001). Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrological Processes, 15(1), 23–38.CrossRef Hanson, G. J., & Simon, A. (2001). Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrological Processes, 15(1), 23–38.CrossRef
128.
Zurück zum Zitat Cancienne, R. M., Fox, G., & Simon, A. (2008). Influence of seepage undercutting on the stability of root-reinforced streambanks. Earth Surface Processes and Landforms, 33(11), 1769–1786.CrossRef Cancienne, R. M., Fox, G., & Simon, A. (2008). Influence of seepage undercutting on the stability of root-reinforced streambanks. Earth Surface Processes and Landforms, 33(11), 1769–1786.CrossRef
129.
Zurück zum Zitat Langendoen, E. J. (2010). Assessing post-dam removal sediment dynamics using the CONCEPTS computer model. In Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27–July 1, 2010, 12 p. Langendoen, E. J. (2010). Assessing post-dam removal sediment dynamics using the CONCEPTS computer model. In Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27–July 1, 2010, 12 p.
130.
Zurück zum Zitat Lai, Y. G. (2013). Coupled 2D Morpho-Dynamic and bank erosion modeling at the upper junction city channel rehabilitation project site, Trinity River, CA. Technical Report No. SRH-2013-09, Technical Service Center, Bureau of Reclamation, Denver, CO. Lai, Y. G. (2013). Coupled 2D Morpho-Dynamic and bank erosion modeling at the upper junction city channel rehabilitation project site, Trinity River, CA. Technical Report No. SRH-2013-09, Technical Service Center, Bureau of Reclamation, Denver, CO.
131.
Zurück zum Zitat Gaeuman, D., Andrews, E. D., Krause, A., & Smith, W. (2009). Predicting fractional bed load transport rates: Application of the Wilcock-Crowe equations to a regulated gravel bed river. Water Resources Research, 45, W06409. doi:10.1029/2008WR007320.CrossRef Gaeuman, D., Andrews, E. D., Krause, A., & Smith, W. (2009). Predicting fractional bed load transport rates: Application of the Wilcock-Crowe equations to a regulated gravel bed river. Water Resources Research, 45, W06409. doi:10.1029/2008WR007320.CrossRef
132.
Zurück zum Zitat Cardno ENTRIX. (2012). Bank-stability analysis of the Upper Junction City Reach Trinity River, CA. Project Report by Cardno Entrix, Project 30088130, Dec 2012. Cardno ENTRIX. (2012). Bank-stability analysis of the Upper Junction City Reach Trinity River, CA. Project Report by Cardno Entrix, Project 30088130, Dec 2012.
133.
Zurück zum Zitat Logan, B., Nelson, J., McDonald, R., & Wright, S. (2010). Mechanics and modeling of flow, sediment transport and morphologic change in riverine lateral separation zones. 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27–July 1. Logan, B., Nelson, J., McDonald, R., & Wright, S. (2010). Mechanics and modeling of flow, sediment transport and morphologic change in riverine lateral separation zones. 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27–July 1.
Metadaten
Titel
Advances in Geofluvial Modeling: Methodologies and Applications
verfasst von
Yong G. Lai
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-11023-3_9