Skip to main content

2015 | OriginalPaper | Buchkapitel

8. Soil Erosion on Upland Areas by Rainfall and Overland Flow

verfasst von : Mathias J. M. Römkens, PhD, Robert R. Wells, PhD, Bin Wang, PhD, Fenli Zheng, PhD, Craig J. Hickey, PhD

Erschienen in: Advances in Water Resources Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soil erosion in agricultural watersheds is a systemic problem that has plagued mankind ever since the practice of agriculture began some 9000 years ago. It is a worldwide problem, the severity of which varies from location to location depending on weather, soil type, topography, cropping practices, and control methods. Research to address and predict soil loss from agricultural land and in watersheds began in earnest in the 1930s following the events of the Dust Bowl. Early research primarily consisted of monitoring of soil loss from natural runoff plots and small watersheds. Gradually and over time, the focus shifted toward the development of prediction equations based on the acquired soil loss database. With computer technology, modeling watershed erosion and sedimentation processes became routine. Also, fundamental research was conducted to acquire a better understanding of the complex aspects of soil erosion and sediment transport processes and to fill in knowledge gaps in cases where data were not readily available. In recent years, most soil loss from upland areas occurs as gully erosion. This chapter presents a background of the knowledge that was systematically acquired in predicting soil erosion from upland areas and the technology that was developed and is used today. This chapter does not address all the aspects of upland soil erosion, but focuses primarily on the erodibility (K-factor) and hydrological aspects (R-factor) of the most widely used erosion prediction equations: the revised universal soil loss equation, version 2 (RUSLE2) and water erosion prediction project model (WEPP) models-based formulae. This chapter also includes a presentation of the Chinese approach of adapting gully erosion predictions according to the universal soil loss equation (USLE) format. Finally, ongoing research and technology development using light detection and ranging (LiDAR) and photogrammetry in gully erosion predictions is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Administrative communication from D. D. Smith to runoff plot managers (January 1, 1961): “Instructions for establishment and maintenance of cultivated fallow plots..
 
Literatur
1.
Zurück zum Zitat Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceeding of the National Academy of Science, 104, 13268–13272. Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceeding of the National Academy of Science, 104, 13268–13272.
2.
Zurück zum Zitat Nearing, M. A., Romkens, M. J. M., Norton, L. D., Stott, D. E., Rhoton, F. E., Laflen, J. M., Flanagan, D. C., Alonso, C. V., Bingner, R. L., Dabney, S. M., Doering, O. C., Huang, C. H., McGregor, K. C., & Simon. A. (2000). Discussion of measurements and models of soil loss rates. Science, 290, 1300–1301.CrossRef Nearing, M. A., Romkens, M. J. M., Norton, L. D., Stott, D. E., Rhoton, F. E., Laflen, J. M., Flanagan, D. C., Alonso, C. V., Bingner, R. L., Dabney, S. M., Doering, O. C., Huang, C. H., McGregor, K. C., & Simon. A. (2000). Discussion of measurements and models of soil loss rates. Science, 290, 1300–1301.CrossRef
3.
Zurück zum Zitat Trimble, S. W., & Crosson, P. (2000). U.S. soil erosion rates-myth and reality. Science, 289, 248–250.CrossRef Trimble, S. W., & Crosson, P. (2000). U.S. soil erosion rates-myth and reality. Science, 289, 248–250.CrossRef
4.
Zurück zum Zitat U.S. Environmental Protection Agency. (1998). National water quality inventory: 1998 report to congress (Report EPA841-R-00-001). Washington, D.C. U.S. Environmental Protection Agency. (1998). National water quality inventory: 1998 report to congress (Report EPA841-R-00-001). Washington, D.C.
5.
Zurück zum Zitat U.S. Environmental Protection Agency. (2000). The quality of our Nation’s waters: A Summary of the National water quality inventory: 1998 report to congress (Report EPA841-S-00-001). Washington, D.C. U.S. Environmental Protection Agency. (2000). The quality of our Nation’s waters: A Summary of the National water quality inventory: 1998 report to congress (Report EPA841-S-00-001). Washington, D.C.
6.
Zurück zum Zitat Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12, 519–539.CrossRef Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12, 519–539.CrossRef
7.
Zurück zum Zitat Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123.CrossRef Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123.CrossRef
8.
Zurück zum Zitat Uri, N. D., & Lewis, J. A. (1999). Agriculture and the dynamics of soil erosion in the United States. Journal of Sustainable Agriculture, 14, 63–82.CrossRef Uri, N. D., & Lewis, J. A. (1999). Agriculture and the dynamics of soil erosion in the United States. Journal of Sustainable Agriculture, 14, 63–82.CrossRef
9.
Zurück zum Zitat Lal, R. (2009). Soils and food sufficiency: A review. Agronomy for Sustainable Development, 29, 113–133.CrossRef Lal, R. (2009). Soils and food sufficiency: A review. Agronomy for Sustainable Development, 29, 113–133.CrossRef
10.
Zurück zum Zitat Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall erosion losses from cropland east of the Rocky Mountains—Guide for selection of practices for soil and water conservation. (Agriculture Handbook, 282) Washington, D.C. Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall erosion losses from cropland east of the Rocky Mountains—Guide for selection of practices for soil and water conservation. (Agriculture Handbook, 282) Washington, D.C.
11.
Zurück zum Zitat Wischmeier, W. H., & D. D. Smith. (1978). Predicting rainfall erosion losses: A guide to conservation planning. (Agricultural Handbook, 537) U.S, Dep. Wischmeier, W. H., & D. D. Smith. (1978). Predicting rainfall erosion losses: A guide to conservation planning. (Agricultural Handbook, 537) U.S, Dep.
12.
Zurück zum Zitat Meyer, L. D., & McCune, D. L. (1958). Rainfall simulator for runoff plots. Agricultural Engineering, 39, 644–648. Meyer, L. D., & McCune, D. L. (1958). Rainfall simulator for runoff plots. Agricultural Engineering, 39, 644–648.
13.
Zurück zum Zitat Swanson, N. A. (1965). Rotating doom rainfall simulator. Transactions of the American Society of Agricultural Engineers, 8, 71–72.CrossRef Swanson, N. A. (1965). Rotating doom rainfall simulator. Transactions of the American Society of Agricultural Engineers, 8, 71–72.CrossRef
14.
Zurück zum Zitat Foster, G. R., & Meyer, L. D. (1972). A closed form soil erosion equation for upland areas. In H. W. Shen (Ed.) Sedimentation (Einstein) (Chap. 12, pp. 1–19). Fort Collins: Colorado State University. Foster, G. R., & Meyer, L. D. (1972). A closed form soil erosion equation for upland areas. In H. W. Shen (Ed.) Sedimentation (Einstein) (Chap. 12, pp. 1–19). Fort Collins: Colorado State University.
16.
Zurück zum Zitat Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook, 703, 384. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook, 703, 384.
17.
Zurück zum Zitat Foster, G. R., McCool, D. K., Renard, K. G., & Moldenhauer W. C. (1981). Conversion of the universal soil loss equation to SI metric units. Journal of Soil and Water Conservation, 36, 355–359. Foster, G. R., McCool, D. K., Renard, K. G., & Moldenhauer W. C. (1981). Conversion of the universal soil loss equation to SI metric units. Journal of Soil and Water Conservation, 36, 355–359.
18.
Zurück zum Zitat Wischmeier, W. H. (1960). Cropping management factor evaluations for a universal soil loss equation. Soil Science Society of America Proceedings, 23, 322–326.CrossRef Wischmeier, W. H. (1960). Cropping management factor evaluations for a universal soil loss equation. Soil Science Society of America Proceedings, 23, 322–326.CrossRef
19.
Zurück zum Zitat Wischmeier, W. H. (1966). Relation of field plot runoff to management and physical factors. Soil Science Society of America Proceedings, 30, 272–277.CrossRef Wischmeier, W. H. (1966). Relation of field plot runoff to management and physical factors. Soil Science Society of America Proceedings, 30, 272–277.CrossRef
20.
Zurück zum Zitat Römkens, M. J. M. (1985).The soil erodibility factor: A perspective. In S. A. El-Swaify, W. C. Moldenhauer, & A. L. Low (Eds.), Soil erosion and conservation (pp. 445–461). Ankeny: Soil Conservation Society. Römkens, M. J. M. (1985).The soil erodibility factor: A perspective. In S. A. El-Swaify, W. C. Moldenhauer, & A. L. Low (Eds.), Soil erosion and conservation (pp. 445–461). Ankeny: Soil Conservation Society.
21.
Zurück zum Zitat Wischmeier, W. H. (1959). A rainfall erosion index for a universal soil loss equation. Soil Science Society of America Proceedings, 23, 246–249.CrossRef Wischmeier, W. H. (1959). A rainfall erosion index for a universal soil loss equation. Soil Science Society of America Proceedings, 23, 246–249.CrossRef
22.
Zurück zum Zitat Laws, O. J., & Parsons, D. A. (1943). The relation of raindrop size to intensity. Transactions of the American Geophysical Union, 24, 452–460.CrossRef Laws, O. J., & Parsons, D. A. (1943). The relation of raindrop size to intensity. Transactions of the American Geophysical Union, 24, 452–460.CrossRef
23.
Zurück zum Zitat Brown, L. C., & Foster, G. R. (1987). Storm erosivity using idealized intensity distributions. Transactions of the ASAE, 30, 379–386.CrossRef Brown, L. C., & Foster, G. R. (1987). Storm erosivity using idealized intensity distributions. Transactions of the ASAE, 30, 379–386.CrossRef
24.
Zurück zum Zitat Wischmeier, W. H. (1974). New developments in estimating water erosion. Proceeding of the 29th Annual Meeting of. (pp. 179–186). Madison: Soil Science Society America. Wischmeier, W. H. (1974). New developments in estimating water erosion. Proceeding of the 29th Annual Meeting of. (pp. 179–186). Madison: Soil Science Society America.
25.
Zurück zum Zitat Weiss, L. L. (1964). Ratio of true to fixed-interval maximum rainfall. Journal of Hydraulic Division ASCE, 90(HY1), 77–82. Weiss, L. L. (1964). Ratio of true to fixed-interval maximum rainfall. Journal of Hydraulic Division ASCE, 90(HY1), 77–82.
26.
Zurück zum Zitat Foster, G. R., & Meyer, L. D. (1975). Mathematical simulation of upland erosion by fundamental erosion mechanics. In Present and prospective technology for predicting sediment yield and sources (pp. 190–207). ARS S 40: USDA Agricultural Research Service. Foster, G. R., & Meyer, L. D. (1975). Mathematical simulation of upland erosion by fundamental erosion mechanics. In Present and prospective technology for predicting sediment yield and sources (pp. 190–207). ARS S 40: USDA Agricultural Research Service.
27.
Zurück zum Zitat Wischmeier, W. H., & Mannering, J. V. (1969). Relation of soil properties to its erodibility. Soil Science Society of America Proceedings, 33, 131–137.CrossRef Wischmeier, W. H., & Mannering, J. V. (1969). Relation of soil properties to its erodibility. Soil Science Society of America Proceedings, 33, 131–137.CrossRef
28.
Zurück zum Zitat Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193. Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.
29.
Zurück zum Zitat USDA-SCS. (1951). Soil survey manual: Agriculture handbook 18. Washington. USDA-SCS. (1951). Soil survey manual: Agriculture handbook 18. Washington.
30.
Zurück zum Zitat Römkens, M. J. M., Roth, C. B., & Nelson, D. W. (1977). Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Science Society of America Journal, 41(5), 954–960.CrossRef Römkens, M. J. M., Roth, C. B., & Nelson, D. W. (1977). Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Science Society of America Journal, 41(5), 954–960.CrossRef
31.
Zurück zum Zitat El-Swaify, S. A., & Dangler, E. W. (1976). Erodibility of selected tropical soils in relation to structural and hydrologic parameters. In G. R. Foster (Ed.), Soil erosion: Prediction and control (pp. 105–114). Ankeny: Soil Conservation Society of America. El-Swaify, S. A., & Dangler, E. W. (1976). Erodibility of selected tropical soils in relation to structural and hydrologic parameters. In G. R. Foster (Ed.), Soil erosion: Prediction and control (pp. 105–114). Ankeny: Soil Conservation Society of America.
32.
Zurück zum Zitat Young, R. A., & Mutchler, C. K. (1977). Erodibility of some Minnesota soils. Journal of Soil and Water Conservation, 32(4), 180–182. Young, R. A., & Mutchler, C. K. (1977). Erodibility of some Minnesota soils. Journal of Soil and Water Conservation, 32(4), 180–182.
33.
Zurück zum Zitat Römkens, M. J. M., Prasad, S. N., Poesen, J. W. A. (1986). Soil erodibility and properties. Transactions of the XIII Congress of the International Society of Soil Science, 5, 492–504. Römkens, M. J. M., Prasad, S. N., Poesen, J. W. A. (1986). Soil erodibility and properties. Transactions of the XIII Congress of the International Society of Soil Science, 5, 492–504.
34.
Zurück zum Zitat Römkens, M. J. M., Poesen, J. W. A., & Wang, J. Y. (1988). Relationship between the USE soil erodibility factor and soil properties. In Rimwanichland, S. (Ed.), Conservation for future generations (pp. 371–385). Bangkok: Department of Land Development. Römkens, M. J. M., Poesen, J. W. A., & Wang, J. Y. (1988). Relationship between the USE soil erodibility factor and soil properties. In Rimwanichland, S. (Ed.), Conservation for future generations (pp. 371–385). Bangkok: Department of Land Development.
35.
Zurück zum Zitat Wang, B., Zheng, F., & Römkens, M. J. M. (2013a). Comparison of soil erodibility factors in USLE, RUSLE2, EPIC, and Dg-models based on Chinese erodibility database. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 63, 69–79. Wang, B., Zheng, F., & Römkens, M. J. M. (2013a). Comparison of soil erodibility factors in USLE, RUSLE2, EPIC, and Dg-models based on Chinese erodibility database. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 63, 69–79.
36.
Zurück zum Zitat Wang, B., Zheng, F., Römkens, M. J. M., & Darboux, F. (2013b). Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1–10. Wang, B., Zheng, F., Römkens, M. J. M., & Darboux, F. (2013b). Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1–10.
37.
Zurück zum Zitat Ellison, W. D. (1947). Soil erosion studies, part I. Agricultural Engineering, 28(4), 145–146. Ellison, W. D. (1947). Soil erosion studies, part I. Agricultural Engineering, 28(4), 145–146.
38.
Zurück zum Zitat Foster. G. R. (1987). User requirements USDA water erosion prediction project (WEPP): Draft 6.2. Purdue University West Lafayette: USDA ARS National Soil Erosion Research Laboratory. Foster. G. R. (1987). User requirements USDA water erosion prediction project (WEPP): Draft 6.2. Purdue University West Lafayette: USDA ARS National Soil Erosion Research Laboratory.
39.
Zurück zum Zitat Elliot, W. J., Laflen, J. M., & Kohl, K. D. (1989). Effect of soil properties on soil erodibility (Paper no. 89–2150). St. Joseph, MI: American Society of Agricultural Engineers. Elliot, W. J., Laflen, J. M., & Kohl, K. D. (1989). Effect of soil properties on soil erodibility (Paper no. 89–2150). St. Joseph, MI: American Society of Agricultural Engineers.
40.
Zurück zum Zitat Nearing, M. A., Foster, G. R., Lane, L. J., & Finkner, S. C. (1989). A process-based soil erosion model for USDA- water erosion prediction project technology. Transactions of the ASAE, 32, 1587–1593.CrossRef Nearing, M. A., Foster, G. R., Lane, L. J., & Finkner, S. C. (1989). A process-based soil erosion model for USDA- water erosion prediction project technology. Transactions of the ASAE, 32, 1587–1593.CrossRef
41.
Zurück zum Zitat Flanagan, D. C., & Nearing, M. A. (1995). USDA water erosion prediction project—hillslope and watershed model documentation (NSERL Report No. 10). West Lafayette: USDA ARS National Soil Erosion Research Laboratory. Flanagan, D. C., & Nearing, M. A. (1995). USDA water erosion prediction project—hillslope and watershed model documentation (NSERL Report No. 10). West Lafayette: USDA ARS National Soil Erosion Research Laboratory.
42.
Zurück zum Zitat Flanagan, D. C., Gilley, J. E., & Franti, T. G. (2007). Water Erosion Prediction Project (WEPP): Development history, model capabilities, and future enhancements. Transactions of the ASABE, 50(5), 1603–1612.CrossRef Flanagan, D. C., Gilley, J. E., & Franti, T. G. (2007). Water Erosion Prediction Project (WEPP): Development history, model capabilities, and future enhancements. Transactions of the ASABE, 50(5), 1603–1612.CrossRef
43.
Zurück zum Zitat Flanagan, D. C., Frankenbenberger J. R., & Ascough, J. C. (2012). WEPP: Model use: Calibration, and validation. Transactions of the ASABE, 55(4), 1463–1477.CrossRef Flanagan, D. C., Frankenbenberger J. R., & Ascough, J. C. (2012). WEPP: Model use: Calibration, and validation. Transactions of the ASABE, 55(4), 1463–1477.CrossRef
44.
Zurück zum Zitat Alberts, E. E., Holzhey, C. S., West, L. T., & Nordin, J. O. (1987). Soil selection USDA Water Erosion Prediction Project (WEPP) (Paper no. 87–2542). St. Joseph, MI: American Society of Agricultural Engineers. Alberts, E. E., Holzhey, C. S., West, L. T., & Nordin, J. O. (1987). Soil selection USDA Water Erosion Prediction Project (WEPP) (Paper no. 87–2542). St. Joseph, MI: American Society of Agricultural Engineers.
45.
Zurück zum Zitat Laflen, J. M., Thomas, A. W., & Welch, R. (1987). Cropland experiments for the WEPP project (Paper no. 87–2544). St. Joseph, MI: American Society of Agricultural Engineers. Laflen, J. M., Thomas, A. W., & Welch, R. (1987). Cropland experiments for the WEPP project (Paper no. 87–2544). St. Joseph, MI: American Society of Agricultural Engineers.
46.
Zurück zum Zitat Foster, G. R., Meyer, L. D., & Onstad, C. A. (1977). An erosion equation derived from basic erosion principles. Transactions of the ASAE, 19(4), 678–682.CrossRef Foster, G. R., Meyer, L. D., & Onstad, C. A. (1977). An erosion equation derived from basic erosion principles. Transactions of the ASAE, 19(4), 678–682.CrossRef
47.
Zurück zum Zitat Lane, L. J., Foster G. R., & Nicks A. D. (1987). Use of fundamental erosion mechanics in erosion prediction (Paper no. 87–2540). St. Joseph, MI: American Society of Agricultural Engineers. Lane, L. J., Foster G. R., & Nicks A. D. (1987). Use of fundamental erosion mechanics in erosion prediction (Paper no. 87–2540). St. Joseph, MI: American Society of Agricultural Engineers.
48.
Zurück zum Zitat Meyer, L. D., & Harmon W. C. (1984). Susceptibility of agricultural soils to interrill erosion. Soil Science Society of America Journal, 48, 1152–1157.CrossRef Meyer, L. D., & Harmon W. C. (1984). Susceptibility of agricultural soils to interrill erosion. Soil Science Society of America Journal, 48, 1152–1157.CrossRef
49.
Zurück zum Zitat Watson, D. A. & Laflen, J. M. (1986). Soil strength, slope, and rainfall intensity effects on interrill erosion. Transactions of the ASAE, 29, 98–102.CrossRef Watson, D. A. & Laflen, J. M. (1986). Soil strength, slope, and rainfall intensity effects on interrill erosion. Transactions of the ASAE, 29, 98–102.CrossRef
50.
Zurück zum Zitat Lattanzi, A. R., Meyer, L. D., & Baumgardner, M.F. (1974). Influence of mulch rate and slope steepness on interrill erosion. Soil Science Society of America Journal, 38, 946–950.CrossRef Lattanzi, A. R., Meyer, L. D., & Baumgardner, M.F. (1974). Influence of mulch rate and slope steepness on interrill erosion. Soil Science Society of America Journal, 38, 946–950.CrossRef
51.
Zurück zum Zitat Singer, M. J., & Blackard, J. (1982). Slope angle-interrill soil relationship for slopes up to 50 %. Soil Science Society of America Journal, 46, 1270–1273.CrossRef Singer, M. J., & Blackard, J. (1982). Slope angle-interrill soil relationship for slopes up to 50 %. Soil Science Society of America Journal, 46, 1270–1273.CrossRef
52.
Zurück zum Zitat Dabney, S. M., Yoder, D. C., Vieira, D. A. N., & Bingner, R. L. (2011). Enhancing RUSLE to include runoff-drivenphenomena. Hydrological Processes, 25, 1373–1390.CrossRef Dabney, S. M., Yoder, D. C., Vieira, D. A. N., & Bingner, R. L. (2011). Enhancing RUSLE to include runoff-drivenphenomena. Hydrological Processes, 25, 1373–1390.CrossRef
53.
Zurück zum Zitat Dabney, S. M., Vieira, D. A. N, & Yoder, D. C. (2013). Effects of topographic feedback on erosion and deposition prediction. Transactions of the ASABE, 56(2), 727–736.CrossRef Dabney, S. M., Vieira, D. A. N, & Yoder, D. C. (2013). Effects of topographic feedback on erosion and deposition prediction. Transactions of the ASABE, 56(2), 727–736.CrossRef
54.
Zurück zum Zitat Dabney, S. M., Yoder, D. C., & Veira, D. A. N. (2012b). The application of the Revised Universal Soil Loss Equation, Version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield. Journal of Soil Conservation, 67(5), 343–353. Dabney, S. M., Yoder, D. C., & Veira, D. A. N. (2012b). The application of the Revised Universal Soil Loss Equation, Version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield. Journal of Soil Conservation, 67(5), 343–353.
55.
Zurück zum Zitat Foster, G. R., Toy, T. J., & Renard, K. G. (2003). Comparison of the USLE, RUSLE i.06c, and RUSLE2 for application to highly disturbed land. First interagency conference on research in the Watersheds (pp. 154–160). Washington, D.C: USDA–ARS. Foster, G. R., Toy, T. J., & Renard, K. G. (2003). Comparison of the USLE, RUSLE i.06c, and RUSLE2 for application to highly disturbed land. First interagency conference on research in the Watersheds (pp. 154–160). Washington, D.C: USDA–ARS.
56.
Zurück zum Zitat Dabney, S. M., Yoder, D., & Renard, K. G. (2012a). Contributions of RUSLE2 to TMDL development. EWRI, 1–10. Dabney, S. M., Yoder, D., & Renard, K. G. (2012a). Contributions of RUSLE2 to TMDL development. EWRI, 1–10.
57.
Zurück zum Zitat Bryan, R. B. (1990). Knickpoint evolution in rillwash. In R. B. Bryan (Ed.), Soil erosion-experiments and models (pp. 111–132). Germany: Catena Supplement 17. Bryan, R. B. (1990). Knickpoint evolution in rillwash. In R. B. Bryan (Ed.), Soil erosion-experiments and models (pp. 111–132). Germany: Catena Supplement 17.
58.
Zurück zum Zitat Renard, K. G., Yoder, D. C., Lightle, D. T., & Dabney, S. M. (2011). Universal Soil Loss Equation and Revised Soil Loss Equation. In Handbook of erosion modeling (pp. 137–167). Oxford: Blackwell. Renard, K. G., Yoder, D. C., Lightle, D. T., & Dabney, S. M. (2011). Universal Soil Loss Equation and Revised Soil Loss Equation. In Handbook of erosion modeling (pp. 137–167). Oxford: Blackwell.
59.
Zurück zum Zitat Römkens, M. J. M. (2010). Erosion and sedimentation research in agricultural watersheds in the USA: From past to present and beyond. Sediment dynamics for a changing future: Proceedings.of the ICCE Symposium (pp. 17–26). Warshaw University: IAHS Publ. 337. Römkens, M. J. M. (2010). Erosion and sedimentation research in agricultural watersheds in the USA: From past to present and beyond. Sediment dynamics for a changing future: Proceedings.of the ICCE Symposium (pp. 17–26). Warshaw University: IAHS Publ. 337.
60.
Zurück zum Zitat Grissinger, E. H. (1996). Rill and gullies erosion. In M. Agassi (Ed.), Soil erosion, conservation, and rehabilitation. New York: Marcel Dekker, Inc. Grissinger, E. H. (1996). Rill and gullies erosion. In M. Agassi (Ed.), Soil erosion, conservation, and rehabilitation. New York: Marcel Dekker, Inc.
61.
Zurück zum Zitat Soil Science Society of America. (2008). Glossary of soil science terms. Madison: Soil Science Society of America. Soil Science Society of America. (2008). Glossary of soil science terms. Madison: Soil Science Society of America.
62.
Zurück zum Zitat Bennett, S. J., Alonso, C. V., Prasad, S. N., & Römkens, M. J. M. (2000). Experiments on headcut growth and migration in concentrated flows typical of upland areas. Water Resources Research, 36, 1911–1922.CrossRef Bennett, S. J., Alonso, C. V., Prasad, S. N., & Römkens, M. J. M. (2000). Experiments on headcut growth and migration in concentrated flows typical of upland areas. Water Resources Research, 36, 1911–1922.CrossRef
63.
Zurück zum Zitat Casalí, J., Bennett, S. J., & Robinson K. M. (2000). Processes of ephemeral gully erosion. International Journal of Sediment Research, 15, 31–41. Casalí, J., Bennett, S. J., & Robinson K. M. (2000). Processes of ephemeral gully erosion. International Journal of Sediment Research, 15, 31–41.
64.
Zurück zum Zitat Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. Catena, 50, 91–133.CrossRef Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. Catena, 50, 91–133.CrossRef
65.
Zurück zum Zitat Helming, K., Römkens, M. J. M., & Prasad, S. N. (1998). Surface roughness related processes of runoff and soil loss: A flume study. Soil Science Society of America Journal, 62, 243–250.CrossRef Helming, K., Römkens, M. J. M., & Prasad, S. N. (1998). Surface roughness related processes of runoff and soil loss: A flume study. Soil Science Society of America Journal, 62, 243–250.CrossRef
66.
Zurück zum Zitat Meyer, L.D., Foster, G.R., & Nikolov, S. (1975). Effect of flow rate and canopy on rill erosion. Transactions of the ASAE, 18, 905–911.CrossRef Meyer, L.D., Foster, G.R., & Nikolov, S. (1975). Effect of flow rate and canopy on rill erosion. Transactions of the ASAE, 18, 905–911.CrossRef
67.
Zurück zum Zitat Mosley, M. P. (1974). Experimental study of rill erosion, Transaction of the ASAE, 17, 909–913.CrossRef Mosley, M. P. (1974). Experimental study of rill erosion, Transaction of the ASAE, 17, 909–913.CrossRef
68.
Zurück zum Zitat Römkens, M. J. M., Prasad, S. N., & Gerits, J. J. P. (1995). Seal breakdown on a surface soil and subsoil by overland flow. In H. B. So, S. R. Raine, B. M. Schafer, & R. J. Loch (Eds.), Sealing, crusting and hardsetting soils: Productivity and conservation (pp. 139–144). Brisbane: Australian Society of Soil Science. Römkens, M. J. M., Prasad, S. N., & Gerits, J. J. P. (1995). Seal breakdown on a surface soil and subsoil by overland flow. In H. B. So, S. R. Raine, B. M. Schafer, & R. J. Loch (Eds.), Sealing, crusting and hardsetting soils: Productivity and conservation (pp. 139–144). Brisbane: Australian Society of Soil Science.
69.
Zurück zum Zitat Römkens, M. J. M., Helming K., & Prasad S. N. (2000). Sediment yield-surface topography relationships for selected Mississippi soils. International Journal of Sediment Research, 15, 1–16. Römkens, M. J. M., Helming K., & Prasad S. N. (2000). Sediment yield-surface topography relationships for selected Mississippi soils. International Journal of Sediment Research, 15, 1–16.
70.
Zurück zum Zitat Römkens, M. J. M., Helming, K., & Prasad, S. N. (2001). Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 46, 103–123.CrossRef Römkens, M. J. M., Helming, K., & Prasad, S. N. (2001). Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 46, 103–123.CrossRef
71.
Zurück zum Zitat Jiang, Z. S., & Zheng F. L. (2005). Prediction model of water erosion on hillslopes. Journal of Sediment Research, 4, 1–6. [In Chinese with English abstract]. Jiang, Z. S., & Zheng F. L. (2005). Prediction model of water erosion on hillslopes. Journal of Sediment Research, 4, 1–6. [In Chinese with English abstract].
72.
Zurück zum Zitat Jing, K., Wang, W. Z., & Zheng, F. L. (2005). Soil erosion and environment in China (p. 359). Beijing: Science. [In Chinese]. Jing, K., Wang, W. Z., & Zheng, F. L. (2005). Soil erosion and environment in China (p. 359). Beijing: Science. [In Chinese].
73.
Zurück zum Zitat Zheng, F. L., & Kang, S. Z. (1998). Erosion and sediment yield in different zones of loess slopes. ACTA Geographica Sinica, 54(5), 422–428. [In Chinese with English abstract]. Zheng, F. L., & Kang, S. Z. (1998). Erosion and sediment yield in different zones of loess slopes. ACTA Geographica Sinica, 54(5), 422–428. [In Chinese with English abstract].
74.
Zurück zum Zitat Jiang, Z. S., Wang Z. Q., & Liu Z. (1996). Study on the use of GIS to estimate soil erosion in a small watershed in the Loess Hilly Region. Research of soil and water conservation, 3(2), 84–97. [In Chinese with English abstract]. Jiang, Z. S., Wang Z. Q., & Liu Z. (1996). Study on the use of GIS to estimate soil erosion in a small watershed in the Loess Hilly Region. Research of soil and water conservation, 3(2), 84–97. [In Chinese with English abstract].
75.
Zurück zum Zitat Zhao, X. G., Wu, F. Q., & Liu, B. Z. (1999). Analysis of runoff and soil loss on gentle fallow slope land in gully region of loess plateau. Proceedings of international symposium of floods and droughts, October, 733–739. [In Chinese with English abstract]. Zhao, X. G., Wu, F. Q., & Liu, B. Z. (1999). Analysis of runoff and soil loss on gentle fallow slope land in gully region of loess plateau. Proceedings of international symposium of floods and droughts, October, 733–739. [In Chinese with English abstract].
76.
Zurück zum Zitat Bennett, S. J., & Alonso C. V. (2005). Kinematics of flow within headcut scour holes on hillslopes. Water Resources Research, 41, W09418. doi:10.1029/2004WR003752. Bennett, S. J., & Alonso C. V. (2005). Kinematics of flow within headcut scour holes on hillslopes. Water Resources Research, 41, W09418. doi:10.1029/2004WR003752.
77.
Zurück zum Zitat Bennett, S. J., & Alonso, C. V. (2006).Turbulent flow and bed pressure within headcut scour holes due to plane reattached jets. Journal of Hydraulic Research, 44, 510–521.CrossRef Bennett, S. J., & Alonso, C. V. (2006).Turbulent flow and bed pressure within headcut scour holes due to plane reattached jets. Journal of Hydraulic Research, 44, 510–521.CrossRef
78.
Zurück zum Zitat Bennett, S. J. (1999). Effect of slope on the growth and migration of headcuts in rills. Geomorphology, 30, 273–290.CrossRef Bennett, S. J. (1999). Effect of slope on the growth and migration of headcuts in rills. Geomorphology, 30, 273–290.CrossRef
79.
Zurück zum Zitat Bennett, S. J., & Casalí, J. (2001). Effect of initial step height on headcut development in upland concentrated flows. Water Resource Research, 37, 1475–1484.CrossRef Bennett, S. J., & Casalí, J. (2001). Effect of initial step height on headcut development in upland concentrated flows. Water Resource Research, 37, 1475–1484.CrossRef
80.
Zurück zum Zitat Gordon, L. M., Bennett, S. J., Wells, R. R., & Alonso, C. V. 2007. Effect of soil stratification on the development and migration of headcuts in upland concentrated flows. Water Resource Research, 43, W07412. doi:10.1029/2006WR005659. Gordon, L. M., Bennett, S. J., Wells, R. R., & Alonso, C. V. 2007. Effect of soil stratification on the development and migration of headcuts in upland concentrated flows. Water Resource Research, 43, W07412. doi:10.1029/2006WR005659.
81.
Zurück zum Zitat Wells, R. R., Alonso, C. V, & Bennett, S. J. (2009a). Morphodynamics of headcut development and soil erosion in upland concentrated flows. Soil Science Society America Journal, 73(2), 521–530. Wells, R. R., Alonso, C. V, & Bennett, S. J. (2009a). Morphodynamics of headcut development and soil erosion in upland concentrated flows. Soil Science Society America Journal, 73(2), 521–530.
82.
Zurück zum Zitat Wells, R. R., Bennett, S. J., & Alonso, C. V. (2009b). Effect of soil texture, tailwater height, and pore-water pressure on the morphodynamics of migrating headcuts in upland concentrated flows. Earth Surface Processes and Landforms, 34, 1867–1877. Wells, R. R., Bennett, S. J., & Alonso, C. V. (2009b). Effect of soil texture, tailwater height, and pore-water pressure on the morphodynamics of migrating headcuts in upland concentrated flows. Earth Surface Processes and Landforms, 34, 1867–1877.
83.
Zurück zum Zitat Wells, R. R., Bennett, S. J., & Alonso, C. V. (2010). Modulation of headcut soil erosion in rills due to upstream sediment loads. Water Resource Research, 46, W12531. doi:10.1029/2010WR009433. Wells, R. R., Bennett, S. J., & Alonso, C. V. (2010). Modulation of headcut soil erosion in rills due to upstream sediment loads. Water Resource Research, 46, W12531. doi:10.1029/2010WR009433.
84.
Zurück zum Zitat Wells, R. R., Momm, H. G., Rigby, J. R., Bennett, S. J., Bingner, R. L., & Dabney, S. M. (2013). An empirical investigation of gully widening rates in upland concentrated flows. Catena, 101, 114–121. Wells, R. R., Momm, H. G., Rigby, J. R., Bennett, S. J., Bingner, R. L., & Dabney, S. M. (2013). An empirical investigation of gully widening rates in upland concentrated flows. Catena, 101, 114–121.
85.
Zurück zum Zitat Day, P. R. (1965). Particle fractionation and particle-size analysis. In C. Black (Ed.), Method of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling (pp. 545–567). Madison: American Society of Agronomy. Day, P. R. (1965). Particle fractionation and particle-size analysis. In C. Black (Ed.), Method of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling (pp. 545–567). Madison: American Society of Agronomy.
86.
Zurück zum Zitat Hanson, G. J. (1990). Surface erodibility of earthen channels at high stresses. Part II. Developing an in situ testing device. Transactions of the ASAE, 33(1), 132–137.CrossRef Hanson, G. J. (1990). Surface erodibility of earthen channels at high stresses. Part II. Developing an in situ testing device. Transactions of the ASAE, 33(1), 132–137.CrossRef
87.
Zurück zum Zitat Hanson, G. J. (1991). Development of a jet index to characterize erosion resistance of soils in earthen spillways. Transactions of the ASAE, 34(5), 2015–2020.CrossRef Hanson, G. J. (1991). Development of a jet index to characterize erosion resistance of soils in earthen spillways. Transactions of the ASAE, 34(5), 2015–2020.CrossRef
88.
Zurück zum Zitat Hanson, G. J., & Cook K. R. (1997). Development of excess shear stress parameters for circular jet testing. Proceedings of the American Society of Agricultural Engineers Annual International Meeting, Minneapolis, MN. August 10–14, 1997. St Joseph, MI: American Society of Agricultural Engineers. Hanson, G. J., & Cook K. R. (1997). Development of excess shear stress parameters for circular jet testing. Proceedings of the American Society of Agricultural Engineers Annual International Meeting, Minneapolis, MN. August 10–14, 1997. St Joseph, MI: American Society of Agricultural Engineers.
89.
Zurück zum Zitat Blake & Hartge, (1986). Bulk density. In A. Klute (Ed.), Method of soil analysis. Part 1. Physical and mineralogical methods (pp. 363–375). Madison: American Society of Agronomy. Blake & Hartge, (1986). Bulk density. In A. Klute (Ed.), Method of soil analysis. Part 1. Physical and mineralogical methods (pp. 363–375). Madison: American Society of Agronomy.
90.
Zurück zum Zitat Gee, G. W., & Bauder J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Method of soil analysis. Part 1. Physical and mineralogical methods (pp. 383–411). Madison: American Society of Agronomy. Gee, G. W., & Bauder J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Method of soil analysis. Part 1. Physical and mineralogical methods (pp. 383–411). Madison: American Society of Agronomy.
91.
Zurück zum Zitat Kilmer, V. J., & Alexander, L. T. (1949). Methods of making mechanical analyses of soils. Soil Science, 68, 15–24.CrossRef Kilmer, V. J., & Alexander, L. T. (1949). Methods of making mechanical analyses of soils. Soil Science, 68, 15–24.CrossRef
92.
Zurück zum Zitat Terzaghi, K. (1948). Theoretical soil mechanics. New York: Wiley. Terzaghi, K. (1948). Theoretical soil mechanics. New York: Wiley.
93.
Zurück zum Zitat Casali, J., Lopez, J., & Giráldez, J. (1999). Ephemeral gully erosion in southern Navarra (Spain). Catena, 36, 65–84.CrossRef Casali, J., Lopez, J., & Giráldez, J. (1999). Ephemeral gully erosion in southern Navarra (Spain). Catena, 36, 65–84.CrossRef
94.
Zurück zum Zitat Cerdan, O., Souchère, V., Lecomte, V., Couturier, A., & Le Bissonnais, Y. (2002). Incorporating soil surface crusting processes in an expert-based runoff model: Sealing and transfer by runoff and erosion related to agricultural management. Catena, 46, 189–205.CrossRef Cerdan, O., Souchère, V., Lecomte, V., Couturier, A., & Le Bissonnais, Y. (2002). Incorporating soil surface crusting processes in an expert-based runoff model: Sealing and transfer by runoff and erosion related to agricultural management. Catena, 46, 189–205.CrossRef
95.
Zurück zum Zitat Parker, C., Thorne, C., Bingner, R., Wells, R., & Wilcox, D. (2007). Automated mapping of potential for ephemeral gully formation in agricultural watersheds laboratory publication. National Sedimentation Laboratory, 56. Parker, C., Thorne, C., Bingner, R., Wells, R., & Wilcox, D. (2007). Automated mapping of potential for ephemeral gully formation in agricultural watersheds laboratory publication. National Sedimentation Laboratory, 56.
96.
Zurück zum Zitat Woodward, D. (1999). Method to predict cropland ephemeral gully erosion. Catena, 37, 393–399.CrossRef Woodward, D. (1999). Method to predict cropland ephemeral gully erosion. Catena, 37, 393–399.CrossRef
97.
Zurück zum Zitat Schmid, T., Schack-Kirchner, H., & Hildebrand, E. (2004). A case study of terrestrial laser-scanning in erosion research: Calculation of roughness indices and volume balance at a logged forest site. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8), 114–118. Schmid, T., Schack-Kirchner, H., & Hildebrand, E. (2004). A case study of terrestrial laser-scanning in erosion research: Calculation of roughness indices and volume balance at a logged forest site. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8), 114–118.
98.
Zurück zum Zitat Momm H. G., Bingner, R. L., Wells, R. R., & Dabney, S. (2011). Methods for gully characterization in agricultural croplands using ground-based light detection and ranging. In F. Bhuiyan (Ed.), Sediment transport—flow and morphological processes ISBN: 978-953-307-374-3. InTech. Momm H. G., Bingner, R. L., Wells, R. R., & Dabney, S. (2011). Methods for gully characterization in agricultural croplands using ground-based light detection and ranging. In F. Bhuiyan (Ed.), Sediment transport—flow and morphological processes ISBN: 978-953-307-374-3. InTech.
99.
Zurück zum Zitat Chandler, J. H., Shiono, K., Ponnambalam, R., & Lane, S. (2001). Measuring flume surfaces for hydraulics research using a Kodak DCS460. The Photogram Record, 17, 39–61. doi:10.1111/0031-868X.00167.CrossRef Chandler, J. H., Shiono, K., Ponnambalam, R., & Lane, S. (2001). Measuring flume surfaces for hydraulics research using a Kodak DCS460. The Photogram Record, 17, 39–61. doi:10.1111/0031-868X.00167.CrossRef
100.
Zurück zum Zitat Heng, B. C. P., Chandler J.H., & Armstrong A. (2010). Applying close range digital photogrammetry in soil erosion studies. The Photogram Record, 25, 240–265.CrossRef Heng, B. C. P., Chandler J.H., & Armstrong A. (2010). Applying close range digital photogrammetry in soil erosion studies. The Photogram Record, 25, 240–265.CrossRef
101.
Zurück zum Zitat Gordon, L. M., Bennett, S. J., & Wells, R. R. (2012). Response of a soil-mantled experimental landscape to exogenic forcing. Water Resource Research, 48, W10514. doi:10.1029/2012WR012283. Gordon, L. M., Bennett, S. J., & Wells, R. R. (2012). Response of a soil-mantled experimental landscape to exogenic forcing. Water Resource Research, 48, W10514. doi:10.1029/2012WR012283.
102.
Zurück zum Zitat Blaisdell, F. W., Anderson, C. L., & Hebaus G. G. (1981). Ultimate dimensions of local scour. Journal of Hydraulic Division ASCE, 107(3), 327–337. Blaisdell, F. W., Anderson, C. L., & Hebaus G. G. (1981). Ultimate dimensions of local scour. Journal of Hydraulic Division ASCE, 107(3), 327–337.
Metadaten
Titel
Soil Erosion on Upland Areas by Rainfall and Overland Flow
verfasst von
Mathias J. M. Römkens, PhD
Robert R. Wells, PhD
Bin Wang, PhD
Fenli Zheng, PhD
Craig J. Hickey, PhD
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-11023-3_8