Skip to main content
Erschienen in: Automotive Innovation 2/2024

18.04.2024

Analysis and Optimization of Commercial Scale PEMFCs With Different Flow Channels Prepared by Ultrafast Laser Fabrication Technique

verfasst von: Guanlei Zhao, Huize Liu, Hanqiao Sun, Zunyan Hu, Jianqiu Li, Liangfei Xu, Minggao Ouyang

Erschienen in: Automotive Innovation | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this study is to investigate the potential reduction of polarization in proton exchange membrane fuel cells (PEMFCs) through the design optimization of flow channel. The impact of structural parameters and surface properties of the bipolar plate flow channels on the PEMFC performance is thoroughly examined on a commercial scale PEMFC with an active area of 203.49 cm2. The fabrication of bipolar plate flow channels with different structural and wetting properties is achieved using a novel ultrafast laser technique and a conventional milling method. Single cell stack is assembled and subjected to polarization curve tests. The findings indicate that decreasing the width of the flow channels generally improves the performance of commercial-scale PEMFCs. The minimum allowable channel width is dependent on the length of the flow channels. Interestingly, flow channels with higher hydrophilicity and surface adhesion do not necessarily lead to poorer water removal capability, which may be attributed to the formation of a thin water film on superhydrophilic channel surfaces. This research provides valuable insights into the design of optimal flow fields for commercial-scale PEMFCs.
Literatur
1.
Zurück zum Zitat Peng, H., Chen, Z., Deng, K., Dirkes, S., Ünlübayir, C., Thul, A., Löwenstein, L., Sauer, D.U., Pischinger, S., Hameyer, K.: A comparison of various universally applicable power distribution strategies for fuel cell hybrid trains utilizing component modeling at different levels of detail: from simulation to test bench measurement. eTransportation 9, 100120 (2021)CrossRef Peng, H., Chen, Z., Deng, K., Dirkes, S., Ünlübayir, C., Thul, A., Löwenstein, L., Sauer, D.U., Pischinger, S., Hameyer, K.: A comparison of various universally applicable power distribution strategies for fuel cell hybrid trains utilizing component modeling at different levels of detail: from simulation to test bench measurement. eTransportation 9, 100120 (2021)CrossRef
2.
Zurück zum Zitat Fan, L., Tu, Z., Luo, X., Chan, S.H.: MW cogenerated proton exchange membrane fuel cell combined heat and power system design for eco-neighborhoods in North China. Int. J. Hydrog. EnergyHydrog. Energy 47(6), 4033–4046 (2022)CrossRef Fan, L., Tu, Z., Luo, X., Chan, S.H.: MW cogenerated proton exchange membrane fuel cell combined heat and power system design for eco-neighborhoods in North China. Int. J. Hydrog. EnergyHydrog. Energy 47(6), 4033–4046 (2022)CrossRef
3.
Zurück zum Zitat Peng, H., Chen, Y., Chen, Z., Li, J., Deng, K., Thul, A., Löwenstein, L., Hameyer, K.: Co-optimization of total running time, timetables, driving strategies and energy management strategies for fuel cell hybrid trains. eTransportation 9, 100130 (2021)CrossRef Peng, H., Chen, Y., Chen, Z., Li, J., Deng, K., Thul, A., Löwenstein, L., Hameyer, K.: Co-optimization of total running time, timetables, driving strategies and energy management strategies for fuel cell hybrid trains. eTransportation 9, 100130 (2021)CrossRef
4.
Zurück zum Zitat David, A., Cullen, D., Neyerlin, A.K.C., Ahluwalia, R.K., Mukundan, R., More, K.L., Borup, R.L., Weber, A.Z., Myers, D.J., Kusoglu, A.: New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021)CrossRef David, A., Cullen, D., Neyerlin, A.K.C., Ahluwalia, R.K., Mukundan, R., More, K.L., Borup, R.L., Weber, A.Z., Myers, D.J., Kusoglu, A.: New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021)CrossRef
5.
Zurück zum Zitat Gao, W., Hu, Z., Huang, H., Xu, L., Fang, C., Li, J., Wang, C., Ouyang, M.: All-condition economy evaluation method for fuel cell systems: system efficiency contour map. eTransportation 9, 100127 (2021)CrossRef Gao, W., Hu, Z., Huang, H., Xu, L., Fang, C., Li, J., Wang, C., Ouyang, M.: All-condition economy evaluation method for fuel cell systems: system efficiency contour map. eTransportation 9, 100127 (2021)CrossRef
6.
Zurück zum Zitat Han, I.S., Jeong, J., Shin, H.K.: PEM fuel-cell stack design for improved fuel utilization. Int. J. Hydrog. EnergyHydrog. Energy 38(27), 11996–12006 (2013)CrossRef Han, I.S., Jeong, J., Shin, H.K.: PEM fuel-cell stack design for improved fuel utilization. Int. J. Hydrog. EnergyHydrog. Energy 38(27), 11996–12006 (2013)CrossRef
7.
Zurück zum Zitat Jiao, K., Xuan, J., Du, Q., Bao, Z., Xie, B., Wang, B., Zhao, Y., Fan, L., Wang, H., Hou, Z., Huo, S., Brandon, N.P., Yin, Y., Guiver, M.D.: Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021)CrossRef Jiao, K., Xuan, J., Du, Q., Bao, Z., Xie, B., Wang, B., Zhao, Y., Fan, L., Wang, H., Hou, Z., Huo, S., Brandon, N.P., Yin, Y., Guiver, M.D.: Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021)CrossRef
8.
Zurück zum Zitat Ren, P., Pei, P., Li, Y., Wu, Z., Chen, D., Huang, S.: Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci.. Energy Combust. Sci. 80, 100859 (2020)CrossRef Ren, P., Pei, P., Li, Y., Wu, Z., Chen, D., Huang, S.: Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci.. Energy Combust. Sci. 80, 100859 (2020)CrossRef
9.
Zurück zum Zitat Zhao, Y., Wang, S., Li, W., Xie, X.: Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell. J. Tsinghua Univ. (Science and Technology) 60(3), 254–262 (2020) Zhao, Y., Wang, S., Li, W., Xie, X.: Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell. J. Tsinghua Univ. (Science and Technology) 60(3), 254–262 (2020)
10.
Zurück zum Zitat Su, A., Chiu, Y.C., Weng, F.B.: The impact of flow field pattern on concentration and performance in PEMFC. Int. J. Energy Res. 29(5), 409–425 (2005)CrossRef Su, A., Chiu, Y.C., Weng, F.B.: The impact of flow field pattern on concentration and performance in PEMFC. Int. J. Energy Res. 29(5), 409–425 (2005)CrossRef
11.
Zurück zum Zitat Wilberforce, T., Hassan, Z.E., Ogungbemi, E., Ijaodola, O., Khatib, F.N., Durrant, A., Thompson, J., Baroutaji, A., Olabi, A.G.: A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renew. Sustain. Energy Rev. 111, 236–260 (2019)CrossRef Wilberforce, T., Hassan, Z.E., Ogungbemi, E., Ijaodola, O., Khatib, F.N., Durrant, A., Thompson, J., Baroutaji, A., Olabi, A.G.: A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renew. Sustain. Energy Rev. 111, 236–260 (2019)CrossRef
12.
Zurück zum Zitat Aiyejina, A., Sastry, M.K.S.: PEMFC flow channel geometry optimization: A review. J. Electrochem. Energy Convers. Storage 9(1), 011011 (2012) Aiyejina, A., Sastry, M.K.S.: PEMFC flow channel geometry optimization: A review. J. Electrochem. Energy Convers. Storage 9(1), 011011 (2012)
13.
Zurück zum Zitat Tanaka, S., Nagumo, K., Yamamoto, M., Chiba, H., Yoshida, K., Okano, R.: Fuel cell system for Honda clarity fuel cell. eTransportation 3, 100046 (2020)CrossRef Tanaka, S., Nagumo, K., Yamamoto, M., Chiba, H., Yoshida, K., Okano, R.: Fuel cell system for Honda clarity fuel cell. eTransportation 3, 100046 (2020)CrossRef
14.
Zurück zum Zitat Biesdorf, J., Forner-Cuenca, A., Schmidt, T.J., Boillat, P.: Impact of hydrophobic coating on mass transport losses in PEFCs. J. Electrochem. Soc.Electrochem. Soc. 162, F1243 (2015)CrossRef Biesdorf, J., Forner-Cuenca, A., Schmidt, T.J., Boillat, P.: Impact of hydrophobic coating on mass transport losses in PEFCs. J. Electrochem. Soc.Electrochem. Soc. 162, F1243 (2015)CrossRef
15.
Zurück zum Zitat Deevanhxay, P., Sasabe, T., Tsushima, S., Hirai, S.: Investigation of water accumulation and discharge behaviors with variation of current density in PEMFC by high-resolution soft X-ray radiography. Int. J. Hydrogen Energy 36(17), 10901–10907 (2011)CrossRef Deevanhxay, P., Sasabe, T., Tsushima, S., Hirai, S.: Investigation of water accumulation and discharge behaviors with variation of current density in PEMFC by high-resolution soft X-ray radiography. Int. J. Hydrogen Energy 36(17), 10901–10907 (2011)CrossRef
16.
Zurück zum Zitat Hayashi, D., Ida, A., Magome, S., Suzuki, T., Yamaguchi, S., Hori, R.: Synchrotron X-Ray Visualization and Simulation for Operating Fuel Cell Diffusion Layers. SAE Technical Paper Series (2017) Hayashi, D., Ida, A., Magome, S., Suzuki, T., Yamaguchi, S., Hori, R.: Synchrotron X-Ray Visualization and Simulation for Operating Fuel Cell Diffusion Layers. SAE Technical Paper Series (2017)
17.
Zurück zum Zitat Xie, B., Zhang, G., Jiang, Y., Wang, R., Sheng, X., Xi, F., Zhao, Z., Chen, W., Zhu, Y., Wang, Y., Wang, H., Jiao, K.: “3D+1D” modeling approach toward large-scale PEM fuel cell simulation and partitioned optimization study on flow field. eTransportation 6, 100090 (2020)CrossRef Xie, B., Zhang, G., Jiang, Y., Wang, R., Sheng, X., Xi, F., Zhao, Z., Chen, W., Zhu, Y., Wang, Y., Wang, H., Jiao, K.: “3D+1D” modeling approach toward large-scale PEM fuel cell simulation and partitioned optimization study on flow field. eTransportation 6, 100090 (2020)CrossRef
18.
Zurück zum Zitat Wang, X., Yan, W., Duan, Y., Weng, F., Jung, G., Lee, C.: Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field. Energy Convers. Manag. 51(5), 959–968 (2010)CrossRef Wang, X., Yan, W., Duan, Y., Weng, F., Jung, G., Lee, C.: Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field. Energy Convers. Manag. 51(5), 959–968 (2010)CrossRef
19.
Zurück zum Zitat Ahmed, D.H., Sung, H.J.: Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density. J. Power. Sources 162(1), 327–339 (2006)CrossRef Ahmed, D.H., Sung, H.J.: Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density. J. Power. Sources 162(1), 327–339 (2006)CrossRef
20.
Zurück zum Zitat Li, Y., Pei, P., Wu, Z., Xu, H., Chen, D., Huang, S.: Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management. Appl. Energy 190(15), 713–724 (2017)CrossRef Li, Y., Pei, P., Wu, Z., Xu, H., Chen, D., Huang, S.: Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management. Appl. Energy 190(15), 713–724 (2017)CrossRef
21.
Zurück zum Zitat Liu, H., Hu, Z., Li, J., Xu, L., Zhao, Y., Ding, Y., Ouyang, M.: A comprehensive overpotential analysis of high-power density fuel cell: channel/rid width design. Int. J. Energy Res. 46(8), 10998–11010 (2022)CrossRef Liu, H., Hu, Z., Li, J., Xu, L., Zhao, Y., Ding, Y., Ouyang, M.: A comprehensive overpotential analysis of high-power density fuel cell: channel/rid width design. Int. J. Energy Res. 46(8), 10998–11010 (2022)CrossRef
22.
Zurück zum Zitat Jeon, D.H.: Effect of gas diffusion layer thickness on liquid water transport characteristics in polymer electrolyte membrane fuel cells. J. Power. Sources 475, 228578 (2020)CrossRef Jeon, D.H.: Effect of gas diffusion layer thickness on liquid water transport characteristics in polymer electrolyte membrane fuel cells. J. Power. Sources 475, 228578 (2020)CrossRef
23.
Zurück zum Zitat Lu, Z., Rath, C., Zhang, G., Kandlikar, S.G.: Water management studies in PEM fuel cells, part IV: effects of channel surface wettability, geometry and orientation on the two-phase flow in parallel gas channels. Int. J. Hydrog. EnergyHydrog. Energy 36(16), 9864–9875 (2011)CrossRef Lu, Z., Rath, C., Zhang, G., Kandlikar, S.G.: Water management studies in PEM fuel cells, part IV: effects of channel surface wettability, geometry and orientation on the two-phase flow in parallel gas channels. Int. J. Hydrog. EnergyHydrog. Energy 36(16), 9864–9875 (2011)CrossRef
24.
Zurück zum Zitat Choudhury, D., Macdonald, J.R., Kar, A.K.: Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev. 8(6), 827–846 (2014)CrossRef Choudhury, D., Macdonald, J.R., Kar, A.K.: Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev. 8(6), 827–846 (2014)CrossRef
25.
Zurück zum Zitat Ijaodola, O.S., Hassan, Z.E., Ogungbemi, E., Khatib, F.N., Wilberforce, T., Thompson, J., Olabi, A.G.: Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy 179, 246–267 (2019)CrossRef Ijaodola, O.S., Hassan, Z.E., Ogungbemi, E., Khatib, F.N., Wilberforce, T., Thompson, J., Olabi, A.G.: Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy 179, 246–267 (2019)CrossRef
26.
Zurück zum Zitat Yang, G., Zhang, D., Wu, Y., Xue, X., Liang, C., Yang, J., Xing, R.: Superhydrophobic stainless steel bipolar plates with fractal structure for fuel cells by nanosecond laser ablation. Adv. Eng. Mater. 24(12), 2200706 (2022)CrossRef Yang, G., Zhang, D., Wu, Y., Xue, X., Liang, C., Yang, J., Xing, R.: Superhydrophobic stainless steel bipolar plates with fractal structure for fuel cells by nanosecond laser ablation. Adv. Eng. Mater. 24(12), 2200706 (2022)CrossRef
27.
Zurück zum Zitat Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S.: Ultrafast laser processing of materials: from science to industry. Light Sci. Appli. 5, e16133 (2016)CrossRef Malinauskas, M., Žukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S.: Ultrafast laser processing of materials: from science to industry. Light Sci. Appli. 5, e16133 (2016)CrossRef
28.
Zurück zum Zitat Bonse, J., Höhm, S., Kirner, S.V., Rosenfeld, A., Krüger, J.: Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017)CrossRef Bonse, J., Höhm, S., Kirner, S.V., Rosenfeld, A., Krüger, J.: Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017)CrossRef
29.
Zurück zum Zitat Guan, Y.C., Luo, F.F., Lim, G.C., Hong, M.H., Zheng, H.Y., Qi, B.: Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method. Mater. Des. 78, 19–24 (2015)CrossRef Guan, Y.C., Luo, F.F., Lim, G.C., Hong, M.H., Zheng, H.Y., Qi, B.: Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method. Mater. Des. 78, 19–24 (2015)CrossRef
30.
Zurück zum Zitat Zhao, G., Zou, G., Wang, W., Geng, R., Yan, X., He, Z., Liu, L., Zhou, X., Lv, J., Wang, J.: Competing effects between condensation and self-removal of water droplets determine antifrosting performance of superhydrophobic surfaces. ACS Appl. Mater. Interfaces 12(6), 7805–7814 (2020)CrossRef Zhao, G., Zou, G., Wang, W., Geng, R., Yan, X., He, Z., Liu, L., Zhou, X., Lv, J., Wang, J.: Competing effects between condensation and self-removal of water droplets determine antifrosting performance of superhydrophobic surfaces. ACS Appl. Mater. Interfaces 12(6), 7805–7814 (2020)CrossRef
31.
Zurück zum Zitat Kussin, J., Sommerfeld, M.: Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33, 143–159 (2022)CrossRef Kussin, J., Sommerfeld, M.: Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33, 143–159 (2022)CrossRef
32.
Zurück zum Zitat Tang, H., Santamaria, A., Park, J.W., Lee, C., Hwang, W.: Quantification of water in hydrophobic and hydrophilic flow channels subjected to gas purging via neutron imaging. J. Power. Sources 196(22), 9373–9381 (2011)CrossRef Tang, H., Santamaria, A., Park, J.W., Lee, C., Hwang, W.: Quantification of water in hydrophobic and hydrophilic flow channels subjected to gas purging via neutron imaging. J. Power. Sources 196(22), 9373–9381 (2011)CrossRef
33.
Zurück zum Zitat Zhang, F.Y., Yang, X.G., Wang, C.Y.: Liquid water removal from a polymer electrolyte fuel cell. J. Electrochem. Soc.Electrochem. Soc. 153(2), A225–A232 (2005)CrossRef Zhang, F.Y., Yang, X.G., Wang, C.Y.: Liquid water removal from a polymer electrolyte fuel cell. J. Electrochem. Soc.Electrochem. Soc. 153(2), A225–A232 (2005)CrossRef
Metadaten
Titel
Analysis and Optimization of Commercial Scale PEMFCs With Different Flow Channels Prepared by Ultrafast Laser Fabrication Technique
verfasst von
Guanlei Zhao
Huize Liu
Hanqiao Sun
Zunyan Hu
Jianqiu Li
Liangfei Xu
Minggao Ouyang
Publikationsdatum
18.04.2024
Verlag
Springer Nature Singapore
Erschienen in
Automotive Innovation / Ausgabe 2/2024
Print ISSN: 2096-4250
Elektronische ISSN: 2522-8765
DOI
https://doi.org/10.1007/s42154-023-00265-w

Weitere Artikel der Ausgabe 2/2024

Automotive Innovation 2/2024 Zur Ausgabe

    Premium Partner