Skip to main content
Erschienen in: Automotive Innovation 2/2024

18.04.2024

Influence Mechanism of Initial Gap Disturbance on the Resistance Spot Welding Process

verfasst von: Yu-Jun Xia, Zhuoran Li, Wenjie Wang, Tianhao Yang, Gang Pi, Yongbing Li

Erschienen in: Automotive Innovation | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The automotive industry’s trend towards lightweighting has led to a widespread usage of high-strength steels (HSS), which poses challenges for resistance spot welding (RSW) process in auto body manufacturing. One such challenge is the frequent occurrence of the initial gap (IG), which can negatively impact the consistency of the RSW process for HSS. This study aims to reveal this impact by comparing multi-sensor process signals, weld surface morphology, nugget size, and its growth process under standard and two-sided IG conditions. A comprehensive analysis of energy input and contact status is performed to investigate the influence mechanism of IG condition on nugget growth and process signal evolution. The study found that the IG disturbance reduces the initial contact area of the sheet-to-sheet interface in comparison to the standard condition. This results in a faster rise in the sheet temperature, an earlier peak in the resistance signal, and a greater susceptibility to expulsion at the early stage of the welding process. During the subsequent process, there is a significant increase in the contact area of both sheet-to-sheet and electrode-to-sheet interfaces, leading to a decrease in dynamic resistance signal and heat generation. Consequently, the nugget size and electrode displacement signal are smaller than the standard ones. Furthermore, the larger contact area along the gap constraint direction causes more heat generation, ultimately resulting in a larger nugget dimension and indentation size in this particular direction. This research can provide guidance for online monitoring and control for the RSW process of HSS.
Literatur
1.
Zurück zum Zitat Bai, X., Chen, G., Li, W., Jia, R., Xuan, L., Zhu, A., Wang, J.: Critical speeds of electric vehicles for regenerative braking. Automot. Innov. 4, 201–214 (2021)CrossRef Bai, X., Chen, G., Li, W., Jia, R., Xuan, L., Zhu, A., Wang, J.: Critical speeds of electric vehicles for regenerative braking. Automot. Innov. 4, 201–214 (2021)CrossRef
2.
Zurück zum Zitat Wang, W., Yu, S., Cao, W., Guo, K.: Review of in-vehicle optical fiber communication technology. Automot. Innov. 5, 272–284 (2022)CrossRef Wang, W., Yu, S., Cao, W., Guo, K.: Review of in-vehicle optical fiber communication technology. Automot. Innov. 5, 272–284 (2022)CrossRef
3.
Zurück zum Zitat Ma, Y., Akita, R., Abe, Y., Geng, P., Luo, P., Tsutsumi, S., Ma, N.: Mechanical performance evaluation of multi-point clinch–adhesive joints of aluminum alloy A5052–H34 and high-strength steel JSC780. Automot. Innov. 6, 340–351 (2023)CrossRef Ma, Y., Akita, R., Abe, Y., Geng, P., Luo, P., Tsutsumi, S., Ma, N.: Mechanical performance evaluation of multi-point clinch–adhesive joints of aluminum alloy A5052–H34 and high-strength steel JSC780. Automot. Innov. 6, 340–351 (2023)CrossRef
4.
Zurück zum Zitat Li, Y.B., Ma, Y.W., Lou, M., Zhang, G.T., Zhang, Q.X., Qi, L., Deng, L.: Advances in spot joining technologies of lightweight thin-walled structures. J. Mech. Eng. 56(6), 125–146 (2020)CrossRef Li, Y.B., Ma, Y.W., Lou, M., Zhang, G.T., Zhang, Q.X., Qi, L., Deng, L.: Advances in spot joining technologies of lightweight thin-walled structures. J. Mech. Eng. 56(6), 125–146 (2020)CrossRef
5.
Zurück zum Zitat Xia, Y.J., Li, Y.B., Lou, M., Lei, H.Y.: Recent advances and analysis of quality monitoring and control technologies for RSW. China Mech. Eng. 31(1), 100–125 (2020) Xia, Y.J., Li, Y.B., Lou, M., Lei, H.Y.: Recent advances and analysis of quality monitoring and control technologies for RSW. China Mech. Eng. 31(1), 100–125 (2020)
6.
Zurück zum Zitat Zhou, K., Yao, P.: Overview of recent advances of process analysis and quality control in resistance spot welding. Mech. Syst. Signal. Pr. 124, 170–198 (2019)CrossRef Zhou, K., Yao, P.: Overview of recent advances of process analysis and quality control in resistance spot welding. Mech. Syst. Signal. Pr. 124, 170–198 (2019)CrossRef
8.
Zurück zum Zitat Moos, S., Vezzetti, E.: Compliant assembly tolerance analysis: guidelines to formalize the resistance spot welding plasticity effects. Int. J. Adv. Manuf. Tech. 61(5–8), 503–518 (2012)CrossRef Moos, S., Vezzetti, E.: Compliant assembly tolerance analysis: guidelines to formalize the resistance spot welding plasticity effects. Int. J. Adv. Manuf. Tech. 61(5–8), 503–518 (2012)CrossRef
9.
Zurück zum Zitat Jun, H., Kim, J.W., Kim, J.H., Lee, K.W., Cheon, J., Ji, C.: Comparison of weldability misalignment between rivets and electrodes in aluminum steel resistance element welding. J. Weld. Join. 39(1), 51–58 (2021)CrossRef Jun, H., Kim, J.W., Kim, J.H., Lee, K.W., Cheon, J., Ji, C.: Comparison of weldability misalignment between rivets and electrodes in aluminum steel resistance element welding. J. Weld. Join. 39(1), 51–58 (2021)CrossRef
10.
Zurück zum Zitat Zhou, B.F., Pychynski, T., Reischl, M., Kharlamov, E., Mikut, R.: Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J. Intell. Manuf. 33(4), 1139–1163 (2022)CrossRef Zhou, B.F., Pychynski, T., Reischl, M., Kharlamov, E., Mikut, R.: Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J. Intell. Manuf. 33(4), 1139–1163 (2022)CrossRef
11.
Zurück zum Zitat Zhao, D.W., Lvanov, M., Wang, Y.X., Du, W.H.: Welding quality evaluation of resistance spot welding based on a hybrid approach. J. Intell. Manuf. 32(7), 1819–1832 (2021)CrossRef Zhao, D.W., Lvanov, M., Wang, Y.X., Du, W.H.: Welding quality evaluation of resistance spot welding based on a hybrid approach. J. Intell. Manuf. 32(7), 1819–1832 (2021)CrossRef
12.
Zurück zum Zitat Zhou, K., Cai, L.L.: Online measuring power factor in AC resistance spot welding. IEEE Trans. Ind. Electron. 61(1), 575–582 (2013)CrossRef Zhou, K., Cai, L.L.: Online measuring power factor in AC resistance spot welding. IEEE Trans. Ind. Electron. 61(1), 575–582 (2013)CrossRef
13.
Zurück zum Zitat Xia, Y.J., Shen, Y., Zhou, L., Li, Y.B.: Expulsion intensity monitoring and modeling in resistance spot welding based on electrode displacement signals. J. Manuf. Sci. E.-T. ASME. 143(3), 031008–031011 (2021)CrossRef Xia, Y.J., Shen, Y., Zhou, L., Li, Y.B.: Expulsion intensity monitoring and modeling in resistance spot welding based on electrode displacement signals. J. Manuf. Sci. E.-T. ASME. 143(3), 031008–031011 (2021)CrossRef
14.
Zurück zum Zitat Xia, Y.J., Su, Z.W., Li, Y.B., Zhou, L., Shen, Y.: Online quantitative evaluation of expulsion in resistance spot welding. J. Manuf. Process. 46, 34–43 (2019)CrossRef Xia, Y.J., Su, Z.W., Li, Y.B., Zhou, L., Shen, Y.: Online quantitative evaluation of expulsion in resistance spot welding. J. Manuf. Process. 46, 34–43 (2019)CrossRef
15.
Zurück zum Zitat Dejans, A., Kurtov, O., Van, R.P.: Acoustic emission as a tool for prediction of nugget diameter in resistance spot welding. J. Manuf. Process. 62, 7–17 (2021)CrossRef Dejans, A., Kurtov, O., Van, R.P.: Acoustic emission as a tool for prediction of nugget diameter in resistance spot welding. J. Manuf. Process. 62, 7–17 (2021)CrossRef
16.
Zurück zum Zitat Hua, L., Wang, B., Wang, X., He, X., Guan, S.: In-situ ultrasonic detection of resistance spot welding quality using embedded probe. J. Mater. Process. Tech. 267, 205–214 (2019)CrossRef Hua, L., Wang, B., Wang, X., He, X., Guan, S.: In-situ ultrasonic detection of resistance spot welding quality using embedded probe. J. Mater. Process. Tech. 267, 205–214 (2019)CrossRef
17.
Zurück zum Zitat Lee, J., Noh, I., Jeong, S.K., Lee, Y., Lee, S.W.: Development of real-time diagnosis framework for angular misalignment of robot spot-welding system based on machine learning. Proc. Manuf. 48, 1009–1019 (2020) Lee, J., Noh, I., Jeong, S.K., Lee, Y., Lee, S.W.: Development of real-time diagnosis framework for angular misalignment of robot spot-welding system based on machine learning. Proc. Manuf. 48, 1009–1019 (2020)
18.
Zurück zum Zitat Summerville, C.D.E., Adams, D., Compston, P., Doolan, M.: Process monitoring of resistance spot welding using the dynamic resistance signature. Weld. J. 96(11), 403–412 (2017) Summerville, C.D.E., Adams, D., Compston, P., Doolan, M.: Process monitoring of resistance spot welding using the dynamic resistance signature. Weld. J. 96(11), 403–412 (2017)
19.
Zurück zum Zitat Min, J.: Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies. J. Mater. Process. Tech. 132(1–3), 102–113 (2003) Min, J.: Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies. J. Mater. Process. Tech. 132(1–3), 102–113 (2003)
20.
Zurück zum Zitat Podržaj, P., Jerman, B., Simončič, S.: Poor fit-up condition in resistance spot welding. J. Mater. Process. Tech. 230, 21–25 (2016)CrossRef Podržaj, P., Jerman, B., Simončič, S.: Poor fit-up condition in resistance spot welding. J. Mater. Process. Tech. 230, 21–25 (2016)CrossRef
21.
Zurück zum Zitat Shen, J., Zhang, Y.S., Lai, X.M.: Influence of initial gap on weld expulsion in resistance spot welding of dual phase steel. Sci. Technol. Weld. Join. 15(5), 386–392 (2010)CrossRef Shen, J., Zhang, Y.S., Lai, X.M.: Influence of initial gap on weld expulsion in resistance spot welding of dual phase steel. Sci. Technol. Weld. Join. 15(5), 386–392 (2010)CrossRef
22.
Zurück zum Zitat Zhou, L., Xia, Y.J., Shen, Y., Haselhuhn, A.S., Wegner, D.M., Li, Y.B., Carlson, B.E.: Comparative study on resistance and displacement based adaptive output tracking control strategies for resistance spot welding. J. Manuf. Process. 63, 98–108 (2021)CrossRef Zhou, L., Xia, Y.J., Shen, Y., Haselhuhn, A.S., Wegner, D.M., Li, Y.B., Carlson, B.E.: Comparative study on resistance and displacement based adaptive output tracking control strategies for resistance spot welding. J. Manuf. Process. 63, 98–108 (2021)CrossRef
23.
Zurück zum Zitat American Welding Society. Specification for automotive weld quality—resistance spot welding of steel. AWS D8.1M. USA (2013) American Welding Society. Specification for automotive weld quality—resistance spot welding of steel. AWS D8.1M. USA (2013)
24.
Zurück zum Zitat Xia, Y.J., Lv, T.L., Ghassemi-Armakim, H., Li, Y.B., Carlson, B.E.: Quantitative interpretation of dynamic resistance signal in resistance spot welding. Weld. J. 102(4), 69s–87s (2023)CrossRef Xia, Y.J., Lv, T.L., Ghassemi-Armakim, H., Li, Y.B., Carlson, B.E.: Quantitative interpretation of dynamic resistance signal in resistance spot welding. Weld. J. 102(4), 69s–87s (2023)CrossRef
25.
Zurück zum Zitat Xia, Y.J., Su, Z.W., Lou, M., Li, Y.B., Carlson, B.E.: Online precision measurement of weld indentation in resistance spot welding using servo gun. IEEE Trans. Instrum. Meas. 69(7), 4465–4475 (2020)CrossRef Xia, Y.J., Su, Z.W., Lou, M., Li, Y.B., Carlson, B.E.: Online precision measurement of weld indentation in resistance spot welding using servo gun. IEEE Trans. Instrum. Meas. 69(7), 4465–4475 (2020)CrossRef
Metadaten
Titel
Influence Mechanism of Initial Gap Disturbance on the Resistance Spot Welding Process
verfasst von
Yu-Jun Xia
Zhuoran Li
Wenjie Wang
Tianhao Yang
Gang Pi
Yongbing Li
Publikationsdatum
18.04.2024
Verlag
Springer Nature Singapore
Erschienen in
Automotive Innovation / Ausgabe 2/2024
Print ISSN: 2096-4250
Elektronische ISSN: 2522-8765
DOI
https://doi.org/10.1007/s42154-023-00264-x

Weitere Artikel der Ausgabe 2/2024

Automotive Innovation 2/2024 Zur Ausgabe

    Premium Partner