Skip to main content
Erschienen in: 3D Research 3/2018

01.09.2018 | 3DR Express

Asymmetric Optical Image Triple Masking Encryption Based on Gyrator and Fresnel Transforms to Remove Silhouette Problem

verfasst von: Mehak Khurana, Hukum Singh

Erschienen in: 3D Research | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An asymmetric scheme based on equal modulus decomposition (EMD) and singular value decomposition (SVD) encrypted using Fresnel and gyrator transform is proposed to enhance the security of the system and to make it free from silhouette problem. In this technique, it uses triple masking technique where double masking is done through random phase mask (diffusers) and the third masking is done through EMD using \(\theta\). After the triple masking the distorted obtained image is decomposed into segments (U, S, V) using SVD and each decomposed encrypted segment is transmitted through different channels and kept at different locations. The extra degree of freedom (keys) provided by triple making technique increases the key space hereby enhances the optical encryption security that makes it difficult for an attacker to find the exact key to recover an original image. It also makes it highly resistant to many conventional and iterative attacks. The robustness of the asymmetric proposed cryptosystem has been examined by simulating on MATLAB 8.3.0 (R2014a). The experimental results are provided to highlight the effectiveness, robustness and suitability of the proposed cryptosystem and to prove the feasibility and validity of the proposal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of the IEEE, 97, 1128–1148.CrossRef Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of the IEEE, 97, 1128–1148.CrossRef
2.
Zurück zum Zitat Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1, 589–596.CrossRef Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1, 589–596.CrossRef
3.
Zurück zum Zitat Millan, M. S., & Perez-Cabre, E. (2011). Optical data encryption. In G. Cristobal, P. Schelkens, & H. Thienpont (Eds.), Optical and digital image processing: fundamentals and applications (pp. 739–767). Weinheim: Wiley.CrossRef Millan, M. S., & Perez-Cabre, E. (2011). Optical data encryption. In G. Cristobal, P. Schelkens, & H. Thienpont (Eds.), Optical and digital image processing: fundamentals and applications (pp. 739–767). Weinheim: Wiley.CrossRef
4.
Zurück zum Zitat Javidi, B., et al. (2016). Roadmap on optical security. Journal of Optics, 18, 083001.CrossRef Javidi, B., et al. (2016). Roadmap on optical security. Journal of Optics, 18, 083001.CrossRef
5.
Zurück zum Zitat Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters, 20, 767–769.CrossRef Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters, 20, 767–769.CrossRef
6.
Zurück zum Zitat Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double random phase encoding in the Fractional Fourier domain. Optics Letters, 25, 887–889.CrossRef Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double random phase encoding in the Fractional Fourier domain. Optics Letters, 25, 887–889.CrossRef
7.
Zurück zum Zitat Liu, X., Mei, W., & Du, H. (2014). Optical image encryption based on compressive sensing and chaos in the Fractional Fourier domain. Journal of Modern Optics, 61(19), 1570–1577.CrossRef Liu, X., Mei, W., & Du, H. (2014). Optical image encryption based on compressive sensing and chaos in the Fractional Fourier domain. Journal of Modern Optics, 61(19), 1570–1577.CrossRef
8.
Zurück zum Zitat Zhou, N., Dong, T., & Wu, J. (2010). Novel image encryption algorithm based on multiple-parameter discrete fractional random transform. Optics Communication, 283(15), 3037–3042.CrossRef Zhou, N., Dong, T., & Wu, J. (2010). Novel image encryption algorithm based on multiple-parameter discrete fractional random transform. Optics Communication, 283(15), 3037–3042.CrossRef
9.
Zurück zum Zitat Singh, H. (2016). Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain In AIP conference proceedings, Vol. 1728, p. 020063–1/4. Singh, H. (2016). Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain In AIP conference proceedings, Vol. 1728, p. 020063–1/4.
10.
Zurück zum Zitat Matoba, O., & Javidi, B. (1999). Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Optics Letters, 24, 762–764.CrossRef Matoba, O., & Javidi, B. (1999). Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Optics Letters, 24, 762–764.CrossRef
11.
Zurück zum Zitat Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29, 1584–1586.CrossRef Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29, 1584–1586.CrossRef
12.
Zurück zum Zitat Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain. International Journal of Optics, 926135, 1–13.CrossRef Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain. International Journal of Optics, 926135, 1–13.CrossRef
13.
Zurück zum Zitat Rodrigo, J. A., Alieva, T., & Calva, N. L. (2007). Gyrator transform: properties and applications. Optics Express, 15, 2190–2203.CrossRef Rodrigo, J. A., Alieva, T., & Calva, N. L. (2007). Gyrator transform: properties and applications. Optics Express, 15, 2190–2203.CrossRef
14.
Zurück zum Zitat Wu, J., Zhang, L., & Zhou, N. (2010). Image encryption based on the multiple-order discrete fractional cosine transform. Optics Communication, 283, 1720–1725.CrossRef Wu, J., Zhang, L., & Zhou, N. (2010). Image encryption based on the multiple-order discrete fractional cosine transform. Optics Communication, 283, 1720–1725.CrossRef
15.
Zurück zum Zitat Chen, L., & Zhao, D. (2006). Optical image encryption with Hartley transforms. Optics Letters, 31, 3438–3440.CrossRef Chen, L., & Zhao, D. (2006). Optical image encryption with Hartley transforms. Optics Letters, 31, 3438–3440.CrossRef
16.
Zurück zum Zitat Zhou, N., Wang, Y., & Gong, L. (2011). Novel optical image encryption scheme based on fractional Mellin transform. Optics Communication, 284, 3234–3242.CrossRef Zhou, N., Wang, Y., & Gong, L. (2011). Novel optical image encryption scheme based on fractional Mellin transform. Optics Communication, 284, 3234–3242.CrossRef
17.
Zurück zum Zitat Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform. International Journal of Optics, 728056, 1–9.CrossRef Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform. International Journal of Optics, 728056, 1–9.CrossRef
18.
Zurück zum Zitat Zhou, N., Li, H., Wang, D., Pan, S., & Zhou, Z. (2015). Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Optics Communication, 343, 10–21.CrossRef Zhou, N., Li, H., Wang, D., Pan, S., & Zhou, Z. (2015). Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Optics Communication, 343, 10–21.CrossRef
19.
Zurück zum Zitat Situ, G., & Zhang, J. (2005). Multiple-image encryption by wavelength multiplexing. Optics Letters, 30, 1306–1308.CrossRef Situ, G., & Zhang, J. (2005). Multiple-image encryption by wavelength multiplexing. Optics Letters, 30, 1306–1308.CrossRef
20.
Zurück zum Zitat Chen, L., & Zhao, D. (2006). Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms. Optics Express, 14, 8552–8560.CrossRef Chen, L., & Zhao, D. (2006). Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms. Optics Express, 14, 8552–8560.CrossRef
21.
Zurück zum Zitat Gopinathan, U., Naughton, T. J., & Sheridan, J. T. (2006). Polarization encoding and multiplexing of two-dimensional signals: application to image encryption. Applied Optics, 45, 5693–5700.CrossRef Gopinathan, U., Naughton, T. J., & Sheridan, J. T. (2006). Polarization encoding and multiplexing of two-dimensional signals: application to image encryption. Applied Optics, 45, 5693–5700.CrossRef
22.
Zurück zum Zitat Li, H. (2009). Image encryption based on gyrator transform and two step phase shifting interferometry. Optics and Lasers in Engineering, 47, 45–50.CrossRef Li, H. (2009). Image encryption based on gyrator transform and two step phase shifting interferometry. Optics and Lasers in Engineering, 47, 45–50.CrossRef
23.
Zurück zum Zitat Masajada, J., & Dubik, B. (2001). Optical vortex generation by three plane wave interference. Optics Communication, 198, 21–27.CrossRef Masajada, J., & Dubik, B. (2001). Optical vortex generation by three plane wave interference. Optics Communication, 198, 21–27.CrossRef
24.
Zurück zum Zitat Carnicer, A., Montes-Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen–ciphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30, 1644–1646.CrossRef Carnicer, A., Montes-Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen–ciphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30, 1644–1646.CrossRef
25.
Zurück zum Zitat Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known-plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31, 1044–1046.CrossRef Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known-plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31, 1044–1046.CrossRef
26.
Zurück zum Zitat Qin, W., & Peng, X. (2010). Asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Letters, 35, 118–120.CrossRef Qin, W., & Peng, X. (2010). Asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Letters, 35, 118–120.CrossRef
27.
Zurück zum Zitat Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Communication, 285, 1078–1081.CrossRef Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Communication, 285, 1078–1081.CrossRef
28.
Zurück zum Zitat Cai, J., Shen, X., Lei, M., Lin, C., & Dou, S. (2015). Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Letters, 40, 475–478.CrossRef Cai, J., Shen, X., Lei, M., Lin, C., & Dou, S. (2015). Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Letters, 40, 475–478.CrossRef
29.
Zurück zum Zitat Andrews, H. C., & Patterson, C. L. (1976). Singular value decompositions and digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP, 24, 26–53.CrossRef Andrews, H. C., & Patterson, C. L. (1976). Singular value decompositions and digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP, 24, 26–53.CrossRef
30.
Zurück zum Zitat Wang, Q. (2012). Optical image encryption with silhouette removal based on interference and phase blend processing. Optics Communication, 285, 4294–4301.CrossRef Wang, Q. (2012). Optical image encryption with silhouette removal based on interference and phase blend processing. Optics Communication, 285, 4294–4301.CrossRef
31.
Zurück zum Zitat Hennelly, B. M., & Sheridan, J. T. (2005). Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. Journal of the Optical Society of America A, 22(5), 917–927.MathSciNetCrossRef Hennelly, B. M., & Sheridan, J. T. (2005). Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. Journal of the Optical Society of America A, 22(5), 917–927.MathSciNetCrossRef
32.
Zurück zum Zitat Rodrigo, J. A., Alieva, T., & Calvo, M. L. (2007). Applications of gyrator transform for image processing. Optics Communication, 278, 279–284.CrossRef Rodrigo, J. A., Alieva, T., & Calvo, M. L. (2007). Applications of gyrator transform for image processing. Optics Communication, 278, 279–284.CrossRef
33.
Zurück zum Zitat Pei, S. C. & Ding, J. J. (2009). Properties, digital implementation, applications, and self-image phenomena of the gyrator transform. In Proceedings of the 17th European Signal Processing Conference (pp. 441–445). Pei, S. C. & Ding, J. J. (2009). Properties, digital implementation, applications, and self-image phenomena of the gyrator transform. In Proceedings of the 17th European Signal Processing Conference (pp. 441–445).
34.
Zurück zum Zitat Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully-Phase encryption using double random-structured phase masks in gyrator domain. Applied Optics, 53, 6472–6481.CrossRef Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully-Phase encryption using double random-structured phase masks in gyrator domain. Applied Optics, 53, 6472–6481.CrossRef
35.
Zurück zum Zitat Sui, L., Liu, B., Wang, Q., Li, Y., & Liang, J. (2015). Color-image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional sine logistic modulation map. Optics and Lasers in Engineering, 75, 17–26.CrossRef Sui, L., Liu, B., Wang, Q., Li, Y., & Liang, J. (2015). Color-image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional sine logistic modulation map. Optics and Lasers in Engineering, 75, 17–26.CrossRef
36.
Zurück zum Zitat Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Double phase-image encryption using Gyrator transforms, and structured phase mask in the frequency plane. Optics and Lasers in Engineering, 67, 145–156.CrossRef Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Double phase-image encryption using Gyrator transforms, and structured phase mask in the frequency plane. Optics and Lasers in Engineering, 67, 145–156.CrossRef
37.
Zurück zum Zitat Chen, J. X., Zhu, Z. L., Fu, C., Zhang, L. B., & Yu, H. (2015). Analysis and improvement of double image encryption scheme using pixel scrambling technique in gyrator domains. Optics and Lasers in Engineering, 66, 1–9.CrossRef Chen, J. X., Zhu, Z. L., Fu, C., Zhang, L. B., & Yu, H. (2015). Analysis and improvement of double image encryption scheme using pixel scrambling technique in gyrator domains. Optics and Lasers in Engineering, 66, 1–9.CrossRef
38.
Zurück zum Zitat Vashisth, S., Yadav, A. K., Singh, H. & Singh, K. (2015). Watermarking in gyrator domain using an asymmetric cryptosystem In Proceedings of SPIE, Vol 9654, p. 96542E − 1/8. Vashisth, S., Yadav, A. K., Singh, H. & Singh, K. (2015). Watermarking in gyrator domain using an asymmetric cryptosystem In Proceedings of SPIE, Vol 9654, p. 96542E − 1/8.
39.
Zurück zum Zitat Abuturab, M. R. (2015). An asymmetric single-channel color image encryption based on Hartley transform and gyrator transform. Optics and Lasers in Engineering, 69, 49–57.CrossRef Abuturab, M. R. (2015). An asymmetric single-channel color image encryption based on Hartley transform and gyrator transform. Optics and Lasers in Engineering, 69, 49–57.CrossRef
40.
Zurück zum Zitat Yadav, A. K., Vashisth, S., Singh, H., & Singh, K. (2015). A phase-image watermarking scheme in gyrator domain using devil’s vortex Fresnel lens as a phase mask. Optics Communication, 344, 172–180.CrossRef Yadav, A. K., Vashisth, S., Singh, H., & Singh, K. (2015). A phase-image watermarking scheme in gyrator domain using devil’s vortex Fresnel lens as a phase mask. Optics Communication, 344, 172–180.CrossRef
41.
Zurück zum Zitat Shi, Y., Situ, G., & Zhang, J. (2007). Multiple-image hiding in the Fresnel domain. Optics Letters, 32, 1914–1916.CrossRef Shi, Y., Situ, G., & Zhang, J. (2007). Multiple-image hiding in the Fresnel domain. Optics Letters, 32, 1914–1916.CrossRef
42.
Zurück zum Zitat Chang, H. T., Hwang, H. E., Lee, C. L., & Lee, M. T. (2011). Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain. Applied Optics, 50, 710–716.CrossRef Chang, H. T., Hwang, H. E., Lee, C. L., & Lee, M. T. (2011). Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain. Applied Optics, 50, 710–716.CrossRef
43.
Zurück zum Zitat Chang, H. T., Hwang, H. E., & Lee, C. L. (2011). Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain. Optics Communication, 284, 4146–4151.CrossRef Chang, H. T., Hwang, H. E., & Lee, C. L. (2011). Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain. Optics Communication, 284, 4146–4151.CrossRef
44.
Zurück zum Zitat Moonen, M., Dooren, P. V., & Vandewalle, J. (1992). Singular value decomposition updating algorithm for subspace tracking. SIAM Journal on Matrix Analysis and Applications, 13(4), 1015–1038.MathSciNetCrossRef Moonen, M., Dooren, P. V., & Vandewalle, J. (1992). Singular value decomposition updating algorithm for subspace tracking. SIAM Journal on Matrix Analysis and Applications, 13(4), 1015–1038.MathSciNetCrossRef
46.
Zurück zum Zitat Khurana, M., & Singh, H. (2018). data computation and secure encryption based on gyrator transform using singular value decomposition and randomization international conference on computational intelligence and data science (ICCIDS). Procedia Computer Science, 132, 1636–1645.CrossRef Khurana, M., & Singh, H. (2018). data computation and secure encryption based on gyrator transform using singular value decomposition and randomization international conference on computational intelligence and data science (ICCIDS). Procedia Computer Science, 132, 1636–1645.CrossRef
47.
Zurück zum Zitat Chen, L., Zhao, D., & Ge, F. (2013). Image encryption based on singular value decomposition and Arnold transform in fractional domain. Optics Communication, 291, 98–103.CrossRef Chen, L., Zhao, D., & Ge, F. (2013). Image encryption based on singular value decomposition and Arnold transform in fractional domain. Optics Communication, 291, 98–103.CrossRef
48.
Zurück zum Zitat Abuturab, M. R. (2014). Color information verification system based on singular value decomposition in gyrator transform domain. Optics and Lasers in Engineering, 57, 13–19.CrossRef Abuturab, M. R. (2014). Color information verification system based on singular value decomposition in gyrator transform domain. Optics and Lasers in Engineering, 57, 13–19.CrossRef
49.
Zurück zum Zitat Makbol, N. M., & Khoo, B. E. (2015). A new robust and secure digital image watermarking scheme based on the integer wavelet transform and singular value decomposition. Digit Signal Process, 33, 134–147.CrossRef Makbol, N. M., & Khoo, B. E. (2015). A new robust and secure digital image watermarking scheme based on the integer wavelet transform and singular value decomposition. Digit Signal Process, 33, 134–147.CrossRef
50.
Zurück zum Zitat Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics, 50(210), 1–24. Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics, 50(210), 1–24.
51.
Zurück zum Zitat Chen, L., Gao, X., Chen, X., He, B., Liu, J., & Li, D. (2016). A new optical image cryptosystem based on two-beam coherent superposition and unequal modulus decomposition. Optics & Laser Technology, 78, 167–174.CrossRef Chen, L., Gao, X., Chen, X., He, B., Liu, J., & Li, D. (2016). A new optical image cryptosystem based on two-beam coherent superposition and unequal modulus decomposition. Optics & Laser Technology, 78, 167–174.CrossRef
52.
Zurück zum Zitat Wang, Y., Quan, C., & Tay, C. J. (2016). New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Applied Optics, 55, 679–686.CrossRef Wang, Y., Quan, C., & Tay, C. J. (2016). New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Applied Optics, 55, 679–686.CrossRef
53.
Zurück zum Zitat Cai, J., Shen, X., & Lin, C. (2016). Security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Communication, 359, 26–30.CrossRef Cai, J., Shen, X., & Lin, C. (2016). Security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Communication, 359, 26–30.CrossRef
54.
Zurück zum Zitat Wu, J., Liu, W., Liu, Z., & Liu, S. (2015). Cryptanalysis of an asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Applied Optics, 54, 8921–8924.CrossRef Wu, J., Liu, W., Liu, Z., & Liu, S. (2015). Cryptanalysis of an asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Applied Optics, 54, 8921–8924.CrossRef
55.
Zurück zum Zitat Wang, X., & Zhao, D. (2012). Optical image hiding with silhouette removal based on the optical interference principle. Applied Optics, 51, 686–691.CrossRef Wang, X., & Zhao, D. (2012). Optical image hiding with silhouette removal based on the optical interference principle. Applied Optics, 51, 686–691.CrossRef
56.
Zurück zum Zitat Kumar, P., Joseph, J., & Singh, K. (2011). Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single special light modulator. Applied Optics, 50, 1805–1811.CrossRef Kumar, P., Joseph, J., & Singh, K. (2011). Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single special light modulator. Applied Optics, 50, 1805–1811.CrossRef
57.
Zurück zum Zitat Qin, Y., & Gong, Q. (2013). Interference-based multiple-image encryption with silhouette removal by position multiplexing. Applied Optics, 52, 3987–3992.CrossRef Qin, Y., & Gong, Q. (2013). Interference-based multiple-image encryption with silhouette removal by position multiplexing. Applied Optics, 52, 3987–3992.CrossRef
58.
Zurück zum Zitat Gong, Q., Wang, Z., Lv, X., & Qin, Y. (2016). Interference-based image encryption with silhouette removal by aid of compressive sensing. Optics Communication, 359, 290–296.CrossRef Gong, Q., Wang, Z., Lv, X., & Qin, Y. (2016). Interference-based image encryption with silhouette removal by aid of compressive sensing. Optics Communication, 359, 290–296.CrossRef
59.
Zurück zum Zitat Chen, W., & Chen, X. (2014). Iterative phase retrieval for simultaneously generating two phase-only masks with silhouette removal in interference-based optical encryption. Optics Communication, 331, 133–138.CrossRef Chen, W., & Chen, X. (2014). Iterative phase retrieval for simultaneously generating two phase-only masks with silhouette removal in interference-based optical encryption. Optics Communication, 331, 133–138.CrossRef
60.
Zurück zum Zitat Zhong, Z., Qin, H., Liu, L., Zhang, Y., & Shan, M. (2017). Silhouette-free image encryption using interference in the multiple-parameter fractional Fourier transform domain. Optics Express, 25, 6974–6982.CrossRef Zhong, Z., Qin, H., Liu, L., Zhang, Y., & Shan, M. (2017). Silhouette-free image encryption using interference in the multiple-parameter fractional Fourier transform domain. Optics Express, 25, 6974–6982.CrossRef
61.
Zurück zum Zitat Khurana, M., & Singh, H. (2017). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8(28), 1–17. Khurana, M., & Singh, H. (2017). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8(28), 1–17.
62.
Zurück zum Zitat Yadav, P. L., & Singh, H. (2018). Optical double image hiding in the fractional Hartley transform using structured phase filter and Arnold transform. 3D Research, 9(20), 1–20. Yadav, P. L., & Singh, H. (2018). Optical double image hiding in the fractional Hartley transform using structured phase filter and Arnold transform. 3D Research, 9(20), 1–20.
63.
Zurück zum Zitat Xu, Y., Wang, H., Li, Y., & Pei, B. (2014). Image encryption based on synchronization of fractional chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 19, 3735–3744.MathSciNetCrossRef Xu, Y., Wang, H., Li, Y., & Pei, B. (2014). Image encryption based on synchronization of fractional chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 19, 3735–3744.MathSciNetCrossRef
64.
Zurück zum Zitat Wu, J., Xu, Y., Wang, H., & Kurths, J. (2017). information-based measures for logical stochastic resonance in a synthetic gene network under Lévy flight superdiffusion. Chaos, 27, 063105.MathSciNetCrossRef Wu, J., Xu, Y., Wang, H., & Kurths, J. (2017). information-based measures for logical stochastic resonance in a synthetic gene network under Lévy flight superdiffusion. Chaos, 27, 063105.MathSciNetCrossRef
65.
Zurück zum Zitat Li, Y., Xu, Y., Xu, W., Deng, Z., & Kurths, J. (2017). Fine separation of particles via the entropic splitter. Physical Review E, 96, 022152.CrossRef Li, Y., Xu, Y., Xu, W., Deng, Z., & Kurths, J. (2017). Fine separation of particles via the entropic splitter. Physical Review E, 96, 022152.CrossRef
Metadaten
Titel
Asymmetric Optical Image Triple Masking Encryption Based on Gyrator and Fresnel Transforms to Remove Silhouette Problem
verfasst von
Mehak Khurana
Hukum Singh
Publikationsdatum
01.09.2018
Verlag
3D Display Research Center
Erschienen in
3D Research / Ausgabe 3/2018
Elektronische ISSN: 2092-6731
DOI
https://doi.org/10.1007/s13319-018-0190-y

Weitere Artikel der Ausgabe 3/2018

3D Research 3/2018 Zur Ausgabe

Premium Partner