Skip to main content
Erschienen in: Experimental Mechanics 4/2023

01.03.2023 | Research paper

Bilayer Stiffness Identification of Soft Tissues by Suction

verfasst von: N. Connesson, N. Briot, P. Y. Rohan, P. A. Barraud, S. A. Elahi, Y. Payan

Erschienen in: Experimental Mechanics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

In vivo mechanical characterisation of biological soft tissue is challenging, even under moderate quasi-static loading. Clinical application of suction-based methods is hindered by usual assumptions of tissues homogeneity and/or time-consuming acquisitions/postprocessing.

Objective

Provide practical and unexpensive suction-based mechanical characterisation of soft tissues considered as bilayered structures. Inverse identification of the bilayers’ Young’s moduli should be performed in almost real-time.

Methods

An original suction system is proposed based on volume measurements. Cyclic partial vacuum is applied under small deformation using suction cups of aperture diameters ranging from 4 to 30 mm. An inverse methodology provides both bilayer elastic stiffnesses, and optionally the upper layer thickness, based on the interpolation of an off-line finite element database. The setup is validated on silicone bilayer phantoms, then tested in vivo on the abdomen skin of one healthy volunteer.

Results

On bilayer silicone phantoms, Young’s moduli identified by suction or uniaxial tension presented a relative difference lower than 10 % (upper layer thickness of 3 mm). Preliminary tests on in vivo abdomen tissue provided skin and underlying adipose tissue Young’s Moduli at 54 kPa and 4.8 kPa respectively. Inverse identification process was performed in less than one minute.

Conclusions

This approach is promising to evaluate elastic moduli in vivo at small strain of bilayered tissues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
lsqnonlin function in MATLAB
 
2
Two main components of Skin FX10 110019
 
3
Deadner Skin FX10 110020
 
4
3D printer Prusa MK3S+
 
5
Aixplorer, probe SuperLinear™ SLH20-6
 
6
Aixplorer, probe SuperLinear™ SL10-2
 
Literatur
1.
Zurück zum Zitat Payan Y (ed) (2012) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Springer, Berlin Payan Y (ed) (2012) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Springer, Berlin
2.
Zurück zum Zitat Budday S, Sommer G, Birkl C, Langkammer C, Haybaeck J, Kohnert J, Bauer M, Paulsen F, Steinmann P, Kuhl E et al (2017) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340CrossRef Budday S, Sommer G, Birkl C, Langkammer C, Haybaeck J, Kohnert J, Bauer M, Paulsen F, Steinmann P, Kuhl E et al (2017) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340CrossRef
3.
Zurück zum Zitat Gao Z, Lister K, Desai JP (2010) Constitutive modeling of liver tissue: experiment and theory. Ann Biomed Eng 38(2):505–516CrossRef Gao Z, Lister K, Desai JP (2010) Constitutive modeling of liver tissue: experiment and theory. Ann Biomed Eng 38(2):505–516CrossRef
4.
Zurück zum Zitat Girard E, Chagnon G, Gremen E, Calvez M, Masri C, Boutonnat J, Trilling B, Nottelet B (2019) Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes. J Mech Behav Biomed Mater 98:291–300CrossRef Girard E, Chagnon G, Gremen E, Calvez M, Masri C, Boutonnat J, Trilling B, Nottelet B (2019) Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes. J Mech Behav Biomed Mater 98:291–300CrossRef
5.
Zurück zum Zitat Kumaraswamy N, Khatam H, Reece GP, Fingeret MC, Markey MK, Ravi-Chandar K (2017) Mechanical response of human female breast skin under uniaxial stretching. J Mech Behav Biomed Mater 74:164–175CrossRef Kumaraswamy N, Khatam H, Reece GP, Fingeret MC, Markey MK, Ravi-Chandar K (2017) Mechanical response of human female breast skin under uniaxial stretching. J Mech Behav Biomed Mater 74:164–175CrossRef
6.
Zurück zum Zitat Masri C, Chagnon G, Favier D, Sartelet H, Girard E (2018) Experimental characterization and constitutive modeling of the biomechanical behavior of male human urethral tissues validated by histological observations. Biomech Model Mechanobiol 17(4):939–950CrossRef Masri C, Chagnon G, Favier D, Sartelet H, Girard E (2018) Experimental characterization and constitutive modeling of the biomechanical behavior of male human urethral tissues validated by histological observations. Biomech Model Mechanobiol 17(4):939–950CrossRef
7.
Zurück zum Zitat Avazmohammadi R, Li DS, Leahy T, Shih E, Soares JS, Gorman JH, Gorman RC, Sacks MS (2018) An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Biomech Model Mechanobiol 17(1):31–53CrossRef Avazmohammadi R, Li DS, Leahy T, Shih E, Soares JS, Gorman JH, Gorman RC, Sacks MS (2018) An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium. Biomech Model Mechanobiol 17(1):31–53CrossRef
8.
Zurück zum Zitat Diab M, Kumaraswamy N, Reece GP, Hanson SE, Fingeret MC, Markey MK, Ravi-Chandar K (2020) Characterization of human female breast and abdominal skin elasticity using a bulge test. J Mech Behav Biomed Mater 103CrossRef Diab M, Kumaraswamy N, Reece GP, Hanson SE, Fingeret MC, Markey MK, Ravi-Chandar K (2020) Characterization of human female breast and abdominal skin elasticity using a bulge test. J Mech Behav Biomed Mater 103CrossRef
9.
Zurück zum Zitat Tonge TK, Atlan LS, Voo LM, Nguyen TD (2013) Full-field bulge test for planar anisotropic tissues: Part i-experimental methods applied to human skin tissue. Acta Biomater 9(4):5913–5925CrossRef Tonge TK, Atlan LS, Voo LM, Nguyen TD (2013) Full-field bulge test for planar anisotropic tissues: Part i-experimental methods applied to human skin tissue. Acta Biomater 9(4):5913–5925CrossRef
10.
Zurück zum Zitat Cox MA, Driessen NJ, Boerboom RA, Bouten CV, Baaijens FP (2008) Mechanical characterization of anisotropic planar biological soft tissues using finite indentation: experimental feasibility. J Biomech 41(2):422–429CrossRef Cox MA, Driessen NJ, Boerboom RA, Bouten CV, Baaijens FP (2008) Mechanical characterization of anisotropic planar biological soft tissues using finite indentation: experimental feasibility. J Biomech 41(2):422–429CrossRef
11.
Zurück zum Zitat Samani A, Zubovits J, Plewes D (2007) Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol 52(6):1565CrossRef Samani A, Zubovits J, Plewes D (2007) Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol 52(6):1565CrossRef
13.
Zurück zum Zitat Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37(9):1339–1352CrossRef Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37(9):1339–1352CrossRef
14.
Zurück zum Zitat Kerdok AE, Ottensmeyer MP, Howe RD (2006) Effects of perfusion on the viscoelastic characteristics of liver. J Biomech 39(12):2221–2231CrossRef Kerdok AE, Ottensmeyer MP, Howe RD (2006) Effects of perfusion on the viscoelastic characteristics of liver. J Biomech 39(12):2221–2231CrossRef
15.
Zurück zum Zitat Ottensmeyer MP (2002) In vivo measurement of solid organ visco-elastic properties. Stud Health Technol Inform pp. 328–333 Ottensmeyer MP (2002) In vivo measurement of solid organ visco-elastic properties. Stud Health Technol Inform pp. 328–333
16.
Zurück zum Zitat Elahi SA, Connesson N, Chagnon G, Payan Y (2019) In-vivo soft tissues mechanical characterization: Volume-based aspiration method validated on silicones. Exp Mech 59(2):251–261 Elahi SA, Connesson N, Chagnon G, Payan Y (2019) In-vivo soft tissues mechanical characterization: Volume-based aspiration method validated on silicones. Exp Mech 59(2):251–261
17.
Zurück zum Zitat Fougeron N, Rohan PY, Haering D, Rose JL, Bonnet X, Pillet H (2020) Combining freehand ultrasound-based indentation and inverse finite element modeling for the identification of hyperelastic material properties of thigh soft tissues. J Biomech Eng 142(9). https://doi.org/10.1115/1.4046444 Fougeron N, Rohan PY, Haering D, Rose JL, Bonnet X, Pillet H (2020) Combining freehand ultrasound-based indentation and inverse finite element modeling for the identification of hyperelastic material properties of thigh soft tissues. J Biomech Eng 142(9). https://​doi.​org/​10.​1115/​1.​4046444
18.
21.
Zurück zum Zitat Wei H, Liu X, Dai A, Li L, Li C, Wang S, Wang Z (2021) In vivo measurement of the mechanical properties of facial soft tissue using a bi-layer material model. Int J Appl Mech 13(03):2150034CrossRef Wei H, Liu X, Dai A, Li L, Li C, Wang S, Wang Z (2021) In vivo measurement of the mechanical properties of facial soft tissue using a bi-layer material model. Int J Appl Mech 13(03):2150034CrossRef
22.
Zurück zum Zitat Xu M, Yang J (2015) Human facial soft tissue thickness and mechanical properties: a literature review. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Am Soc Mech Eng 57045: V01AT02A045 Xu M, Yang J (2015) Human facial soft tissue thickness and mechanical properties: a literature review. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Am Soc Mech Eng 57045: V01AT02A045
23.
Zurück zum Zitat Diridollou S, Berson M, Vabre V, Black D, Karlsson B, Auriol F, Gregoire J, Yvon C, Vaillant L, Gall Y, Patat F (1998) An in vivo method for measuring the mechanical properties of the skin using ultrasound. Ultrasound Med Biol 24(2):215–224 Diridollou S, Berson M, Vabre V, Black D, Karlsson B, Auriol F, Gregoire J, Yvon C, Vaillant L, Gall Y, Patat F (1998) An in vivo method for measuring the mechanical properties of the skin using ultrasound. Ultrasound Med Biol 24(2):215–224
24.
Zurück zum Zitat Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagarde J, Gall Y, Berson M (2000) In vivo model of the mechanical properties of the human skin under suction. Skin Res Technol 6(4):214–221CrossRef Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagarde J, Gall Y, Berson M (2000) In vivo model of the mechanical properties of the human skin under suction. Skin Res Technol 6(4):214–221CrossRef
27.
Zurück zum Zitat Badir S, Bajka M, Mazza E (2013) A novel procedure for the mechanical characterization of the uterine cervix during pregnancy. J Mech Behav Biomed Mater 27:143–153CrossRef Badir S, Bajka M, Mazza E (2013) A novel procedure for the mechanical characterization of the uterine cervix during pregnancy. J Mech Behav Biomed Mater 27:143–153CrossRef
28.
Zurück zum Zitat Müller B, Elrod J, Pensalfini M, Hopf R, Distler O, Schiestl C, Mazza E (2018) A novel ultra-light suction device for mechanical characterization of skin. PLoS ONE 13(8)CrossRef Müller B, Elrod J, Pensalfini M, Hopf R, Distler O, Schiestl C, Mazza E (2018) A novel ultra-light suction device for mechanical characterization of skin. PLoS ONE 13(8)CrossRef
29.
Zurück zum Zitat Hollenstein M, Bugnard G, Joos R, Kropf S, Villiger P, Mazza E (2013) Towards laparoscopic tissue aspiration. Med Image Anal 17(8):1037–1045CrossRef Hollenstein M, Bugnard G, Joos R, Kropf S, Villiger P, Mazza E (2013) Towards laparoscopic tissue aspiration. Med Image Anal 17(8):1037–1045CrossRef
30.
Zurück zum Zitat Kauer M, Vuskovic V, Dual J, Székely G, Bajka M (2002) Inverse finite element characterization of soft tissues. Med Image Anal 6(3):275–287MATHCrossRef Kauer M, Vuskovic V, Dual J, Székely G, Bajka M (2002) Inverse finite element characterization of soft tissues. Med Image Anal 6(3):275–287MATHCrossRef
31.
Zurück zum Zitat Lakhani P, Dwivedi KK, Parashar A, Kumar N (2021) Non-invasive in vivo quantification of directional dependent variation in mechanical properties for human skin. Front Bioeng Biotechnol 9 Lakhani P, Dwivedi KK, Parashar A, Kumar N (2021) Non-invasive in vivo quantification of directional dependent variation in mechanical properties for human skin. Front Bioeng Biotechnol 9
32.
Zurück zum Zitat Nava A, Mazza E, Furrer M, Villiger P, Reinhart W (2008) In vivo mechanical characterization of human liver. Med Image Anal 12(2):203–216CrossRef Nava A, Mazza E, Furrer M, Villiger P, Reinhart W (2008) In vivo mechanical characterization of human liver. Med Image Anal 12(2):203–216CrossRef
33.
Zurück zum Zitat Röhrnbauer B, Betschart C, Perucchini D, Bajka M, Fink D, Maake C, Mazza E, Scheiner DA (2017) Measuring tissue displacement of the anterior vaginal wall using the novel aspiration technique in vivo. Sci Rep 7(1):1–7CrossRef Röhrnbauer B, Betschart C, Perucchini D, Bajka M, Fink D, Maake C, Mazza E, Scheiner DA (2017) Measuring tissue displacement of the anterior vaginal wall using the novel aspiration technique in vivo. Sci Rep 7(1):1–7CrossRef
34.
Zurück zum Zitat Schiavone P, Chassat F, Boudou T, Promayon E, Valdivia F, Payan Y (2009) In vivo measurement of human brain elasticity using a light aspiration device. Med Image Anal 13(4):673–678CrossRef Schiavone P, Chassat F, Boudou T, Promayon E, Valdivia F, Payan Y (2009) In vivo measurement of human brain elasticity using a light aspiration device. Med Image Anal 13(4):673–678CrossRef
35.
Zurück zum Zitat Vuskovic V (2001) Device for in-vivo measurement of mechanical properties of internal human soft tissues. PhD thesis, ETH Zurich Vuskovic V (2001) Device for in-vivo measurement of mechanical properties of internal human soft tissues. PhD thesis, ETH Zurich
36.
Zurück zum Zitat Weickenmeier J, Jabareen M, Mazza E (2015) Suction based mechanical characterization of superficial facial soft tissues. J Biomech 48(16):4279–4286CrossRef Weickenmeier J, Jabareen M, Mazza E (2015) Suction based mechanical characterization of superficial facial soft tissues. J Biomech 48(16):4279–4286CrossRef
37.
Zurück zum Zitat Luboz V, Promayon E, Payan Y (2014) Linear elastic properties of the facial soft tissues using an aspiration device: towards patient specific characterization. Ann Biomed Eng 42(11):2369–2378CrossRef Luboz V, Promayon E, Payan Y (2014) Linear elastic properties of the facial soft tissues using an aspiration device: towards patient specific characterization. Ann Biomed Eng 42(11):2369–2378CrossRef
39.
Zurück zum Zitat Kappert K, Connesson N, Elahi S, Boonstra S, Balm A, van der Heijden F, Payan Y (2021) In-vivo tongue stiffness measured by aspiration: Resting vs general anesthesia. J Biomech 114CrossRef Kappert K, Connesson N, Elahi S, Boonstra S, Balm A, van der Heijden F, Payan Y (2021) In-vivo tongue stiffness measured by aspiration: Resting vs general anesthesia. J Biomech 114CrossRef
41.
Zurück zum Zitat Sachs D, Wahlsten A, Kozerke S, Restivo G, Mazza E (2021) A biphasic multilayer computational model of human skin. Biomech Model Mechanobiol 20(3):969–982CrossRef Sachs D, Wahlsten A, Kozerke S, Restivo G, Mazza E (2021) A biphasic multilayer computational model of human skin. Biomech Model Mechanobiol 20(3):969–982CrossRef
42.
Zurück zum Zitat MacKinnon JG (2013) Thirty years of heteroskedasticity-robust inference. In: Recent advances and future directions in causality, prediction, and specification analysis, Springer, pp 437–461 MacKinnon JG (2013) Thirty years of heteroskedasticity-robust inference. In: Recent advances and future directions in causality, prediction, and specification analysis, Springer, pp 437–461
45.
47.
Zurück zum Zitat Jemec G, Jemec B, Jemec B, Serup J (1990) The effect of superficial hydration on the mechanical properties of human skin in vivo: implications for plastic surgery. Plast Reconstr Surg 85(1):100–103CrossRef Jemec G, Jemec B, Jemec B, Serup J (1990) The effect of superficial hydration on the mechanical properties of human skin in vivo: implications for plastic surgery. Plast Reconstr Surg 85(1):100–103CrossRef
48.
Zurück zum Zitat Park A (1972) Rheology of stratum corneum-i: A molecular interpretation of the stress-strain curve. J Soc Cosmet Chem 23:3–12 Park A (1972) Rheology of stratum corneum-i: A molecular interpretation of the stress-strain curve. J Soc Cosmet Chem 23:3–12
49.
Zurück zum Zitat Joodaki H, Panzer MB (2018) Skin mechanical properties and modeling: A review. Proc Inst Mech Eng Part H: J Eng Med 232(4):323–343CrossRef Joodaki H, Panzer MB (2018) Skin mechanical properties and modeling: A review. Proc Inst Mech Eng Part H: J Eng Med 232(4):323–343CrossRef
50.
Zurück zum Zitat Kalra A, Lowe A, Al-Jumaily A (2016) Mechanical behaviour of skin: a review. J Mater Sci Eng 5(4):1000254 Kalra A, Lowe A, Al-Jumaily A (2016) Mechanical behaviour of skin: a review. J Mater Sci Eng 5(4):1000254
51.
Zurück zum Zitat Mostafavi Yazdi SJ, Baqersad J (2022) Mechanical modeling and characterization of human skin: A Rev J Biomech 130:110864 Mostafavi Yazdi SJ, Baqersad J (2022) Mechanical modeling and characterization of human skin: A Rev J Biomech 130:110864
52.
Zurück zum Zitat Mîra A, Carton AK, Muller S, Payan Y (2018) A biomechanical breast model evaluated with respect to mri data collected in three different positions. Clin Biomech Elsevier Ltd 60:191–199CrossRef Mîra A, Carton AK, Muller S, Payan Y (2018) A biomechanical breast model evaluated with respect to mri data collected in three different positions. Clin Biomech Elsevier Ltd 60:191–199CrossRef
53.
Zurück zum Zitat Nazari MA, Perrier P, Chabanas M, Payan Y (2010) Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation. Comput Methods Biomech Biomed Engin 13(4):469–482CrossRef Nazari MA, Perrier P, Chabanas M, Payan Y (2010) Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation. Comput Methods Biomech Biomed Engin 13(4):469–482CrossRef
54.
Zurück zum Zitat Pensalfini M, Weickenmeier J, Rominger M, Santoprete R, Distler O, Mazza E (2018) Location-specific mechanical response and morphology of facial soft tissues. J Mech Behav Biomed Mater 78:108–115CrossRef Pensalfini M, Weickenmeier J, Rominger M, Santoprete R, Distler O, Mazza E (2018) Location-specific mechanical response and morphology of facial soft tissues. J Mech Behav Biomed Mater 78:108–115CrossRef
56.
Zurück zum Zitat Bucki M, Luboz V, Perrier A, Champion E, Diot B, Vuillerme N, Payan Y (2016) Clinical workflow for personalized foot pressure ulcer prevention. Med Eng Phys 38(9):845–853CrossRef Bucki M, Luboz V, Perrier A, Champion E, Diot B, Vuillerme N, Payan Y (2016) Clinical workflow for personalized foot pressure ulcer prevention. Med Eng Phys 38(9):845–853CrossRef
58.
Zurück zum Zitat Aoki T, Ohashi T, Matsumoto T, Sato M (1997) The pipette aspiration applied to the local stiffness measurement of soft tissues. Ann Biomed Eng 25(3):581–587CrossRef Aoki T, Ohashi T, Matsumoto T, Sato M (1997) The pipette aspiration applied to the local stiffness measurement of soft tissues. Ann Biomed Eng 25(3):581–587CrossRef
59.
Zurück zum Zitat Aversano G, Bellemans A, Li Z, Coussement A, Gicquel O, Parente A (2019) Application of reduced-order models based on pca & kriging for the development of digital twins of reacting flow applications. Computers & Chemical Engineering 121:422–441 Aversano G, Bellemans A, Li Z, Coussement A, Gicquel O, Parente A (2019) Application of reduced-order models based on pca & kriging for the development of digital twins of reacting flow applications. Computers & Chemical Engineering 121:422–441
Metadaten
Titel
Bilayer Stiffness Identification of Soft Tissues by Suction
verfasst von
N. Connesson
N. Briot
P. Y. Rohan
P. A. Barraud
S. A. Elahi
Y. Payan
Publikationsdatum
01.03.2023
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 4/2023
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-023-00946-x

Weitere Artikel der Ausgabe 4/2023

Experimental Mechanics 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.