Skip to main content
Erschienen in:
Buchtitelbild

2012 | OriginalPaper | Buchkapitel

1. CMOS Performance Scaling

verfasst von : Ali Khakifirooz, Dimitri A. Antoniadis

Erschienen in: Graphene Nanoelectronics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

CMOS transistors have been scaling exponentially in the past two decades and the intrinsic device performance has followed a commensurate scaling trend. Prior to the 90-nm node, mere shrinking of the device dimensions, following Dennard’s scaling theory, was sufficient to guarantee increased device performance; beyond the 90-nm node, new innovations were necessary to continue the historical performance scaling trend. Strain engineering and high-k/metal gate technologies were the two major innovations that made the commensurate performance scaling in the past decade possible. However, it appears that new device structures and performance boosters will continue to be the need of the future. This chapter provides a basic overview of MOSFET scaling trend, followed by a discussion of MOSFET operation in deca-nanometer scale based on the so-called virtual source injection model. A simple analytical model for transistor IV characteristics and intrinsic transistor delay is provided and used to quantify the historical trends of MOSFET performance scaling. Carrier velocity is shown to be the main driver for the continued MOSFET performance increase. Finally, the prospect of velocity increase is reviewed for strained Si, Ge, and compound semiconductors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that the definition of the threshold voltage is somewhat arbitrary as the transition from off-state to on-state, also known as strong inversion, is gradual. The transition region is often called weak inversion. Several definitions for the threshold voltage are given in the literature. The two most common definitions that are based on the IV characteristics of the transistor are (1) constant current threshold voltage, where V T is defined as the gate voltage at which the drain current is equal to an empirically-defined current, usually around 10-7 A/WL, with W and L being the gate width and length in micrometer, respectively, and (2) extrapolated threshold voltage, obtained by drawing the tangent to the IV curve at the point where the transconductance is maximum and finding the intercept with the x-axis.
 
Literatur
1.
Zurück zum Zitat R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. Leo Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, pp. 256–268, 1974.CrossRef R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. Leo Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, pp. 256–268, 1974.CrossRef
2.
Zurück zum Zitat F. Boeuf, et al., “0.248 μm2 and 0.334 μm2 conventional bulk 6 T-SRAM bit-cells for 45 nm node low cost - general purpose applications,” in Symp. VLSI Tech., pp. 130–131, 2005. F. Boeuf, et al., “0.248 μm2 and 0.334 μm2 conventional bulk 6 T-SRAM bit-cells for 45 nm node low cost - general purpose applications,” in Symp. VLSI Tech., pp. 130–131, 2005.
3.
Zurück zum Zitat A. Khakifirooz and D. A. Antoniadis, “MOSFET performance scaling – Part I: Historical trends,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1391–1400, 2008.CrossRef A. Khakifirooz and D. A. Antoniadis, “MOSFET performance scaling – Part I: Historical trends,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1391–1400, 2008.CrossRef
4.
Zurück zum Zitat A. Khakifirooz and D. A. Antoniadis, “MOSFET Performance scaling – Part II: Future directions,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1401–1408, 2008.CrossRef A. Khakifirooz and D. A. Antoniadis, “MOSFET Performance scaling – Part II: Future directions,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1401–1408, 2008.CrossRef
5.
Zurück zum Zitat A. Khakifirooz, O.M. Nayfeh, and D.A. Antoniadis, “A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1674–1680, 2008.CrossRef A. Khakifirooz, O.M. Nayfeh, and D.A. Antoniadis, “A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1674–1680, 2008.CrossRef
6.
Zurück zum Zitat M. H. Na, E. J. Nowak, W. Haensch, and J. Cai, “The effective drive current in CMOS inverters,” in IEDM Tech. Dig., Dec. 2002, pp. 121–124. M. H. Na, E. J. Nowak, W. Haensch, and J. Cai, “The effective drive current in CMOS inverters,” in IEDM Tech. Dig., Dec. 2002, pp. 121–124.
7.
Zurück zum Zitat M. Lundstrom, “On the mobility versus drain current relation for a nanoscale MOSFET,” IEEE Electron Device Lett., vol. 22, no. 6, pp. 293–295, 2001.CrossRef M. Lundstrom, “On the mobility versus drain current relation for a nanoscale MOSFET,” IEEE Electron Device Lett., vol. 22, no. 6, pp. 293–295, 2001.CrossRef
8.
Zurück zum Zitat T. Irisawa, T. Numata, T. Tezuka, N. Sugiyama, and S. Takagi, “Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain,” in IEDM Tech. Dig., 2006, pp. 457–460. T. Irisawa, T. Numata, T. Tezuka, N. Sugiyama, and S. Takagi, “Electron transport properties of ultrathin-body and tri-gate SOI nMOSFETs with biaxial and uniaxial strain,” in IEDM Tech. Dig., 2006, pp. 457–460.
9.
Zurück zum Zitat P. Hashemi, L. Gomez, M. Canonico, and J.L. Hoyt, “Electron transport in gate-all-around uniaxial tensile strained-Si nanowire n-MOSFETs,” in IEDM Tech. Dig., 2008, pp. 865–868. P. Hashemi, L. Gomez, M. Canonico, and J.L. Hoyt, “Electron transport in gate-all-around uniaxial tensile strained-Si nanowire n-MOSFETs,” in IEDM Tech. Dig., 2008, pp. 865–868.
10.
Zurück zum Zitat K. Maitra, A. Khakifirooz, P. Kulkarni, et al., “Aggressively scaled strained-silicon-on-insulator undoped-body high-k/metal-gate nFinFETs for high-performance logic applications,” IEEE Electron Device Lett., vol. 32, no. 6, pp. 713–715, 2011.CrossRef K. Maitra, A. Khakifirooz, P. Kulkarni, et al., “Aggressively scaled strained-silicon-on-insulator undoped-body high-k/metal-gate nFinFETs for high-performance logic applications,” IEEE Electron Device Lett., vol. 32, no. 6, pp. 713–715, 2011.CrossRef
11.
Zurück zum Zitat S. Narasimha, et al., “High performance 45 nm SOI technology with enhanced strain, porous low-k BEOL, and immersion lithography,” in IEDM Tech. Dig., 2006, p. 689. S. Narasimha, et al., “High performance 45 nm SOI technology with enhanced strain, porous low-k BEOL, and immersion lithography,” in IEDM Tech. Dig., 2006, p. 689.
12.
Zurück zum Zitat B. Yang, et al., “Stress dependence and poly-pitch scaling characteristics of (110) PMOS drive current,” in Symp. VLSI Tech., 2007, pp. 126–127. B. Yang, et al., “Stress dependence and poly-pitch scaling characteristics of (110) PMOS drive current,” in Symp. VLSI Tech., 2007, pp. 126–127.
13.
Zurück zum Zitat D.-H. Kim and J. A. del Alamo, “Logic Performance of 40 nm InAs HEMTs,” in IEDM Tech. Dig., 2007, p. 629. D.-H. Kim and J. A. del Alamo, “Logic Performance of 40 nm InAs HEMTs,” in IEDM Tech. Dig., 2007, p. 629.
14.
Zurück zum Zitat D.-H. Kim and J. del Alamo, “30 nm E-mode InAs PHEMTs for THz and future logic applications,” in IEDM Tech. Dig., 2008, p. 30.1.1. D.-H. Kim and J. del Alamo, “30 nm E-mode InAs PHEMTs for THz and future logic applications,” in IEDM Tech. Dig., 2008, p. 30.1.1.
15.
Zurück zum Zitat G. G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, “Carrier transport in high-mobility III–V quantum-well transistors and performance impact for high-speed low-power logic applications,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1094–1097, 2008.CrossRef G. G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, “Carrier transport in high-mobility III–V quantum-well transistors and performance impact for high-speed low-power logic applications,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1094–1097, 2008.CrossRef
16.
Zurück zum Zitat D. Kim, T. Krishnamohan, H.S.P. Wong, and K.C. Saraswat, “Band to band tunneling study in high mobility materials : III-V, Si, Ge and strained SiGe,” in Device Research Conf., 2007, p. 57. D. Kim, T. Krishnamohan, H.S.P. Wong, and K.C. Saraswat, “Band to band tunneling study in high mobility materials : III-V, Si, Ge and strained SiGe,” in Device Research Conf., 2007, p. 57.
17.
Zurück zum Zitat K. D. Cantley, Y. Liu, H. S. Pal, T. Low, S. S. Ahmed, and M. S. Lundstrom, “Performance analysis of III-V materials in a double-gate nano-MOSFET,” in IEDM Tech. Dig., 2007, p. 113. K. D. Cantley, Y. Liu, H. S. Pal, T. Low, S. S. Ahmed, and M. S. Lundstrom, “Performance analysis of III-V materials in a double-gate nano-MOSFET,” in IEDM Tech. Dig., 2007, p. 113.
Zurück zum Zitat Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2nd Ed., 2009. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2nd Ed., 2009.
Zurück zum Zitat D.K. Schroder, Semiconductor Material and Device Characterization, John Wiley and Sons, 3rd Ed., 2006. D.K. Schroder, Semiconductor Material and Device Characterization, John Wiley and Sons, 3rd Ed., 2006.
Zurück zum Zitat M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press, 2000. M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press, 2000.
Zurück zum Zitat S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1997. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1997.
Metadaten
Titel
CMOS Performance Scaling
verfasst von
Ali Khakifirooz
Dimitri A. Antoniadis
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-0548-1_1