Skip to main content

2012 | OriginalPaper | Buchkapitel

2. Electronic Transport in Graphene

verfasst von : Jun Zhu

Erschienen in: Graphene Nanoelectronics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an experimental overview of the electrical transport properties of graphene and graphene nanoribbons, focusing on phenomena related to electronics applications. Section 2.1 gives a brief description of the band structure. Section 2.2 discusses the effect of various scattering mechanisms in 2D sheets and nanoribbons and compares the characteristics of exfoliated and synthesized graphene. The physics of high-bias transport in graphene field effect transistors is described in Sect. 2.3. Section 2.4 gives a brief summary and outlook.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Physics 3, 36–40 (2006).CrossRef Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Physics 3, 36–40 (2006).CrossRef
3.
Zurück zum Zitat Castro Neto, A., Guinea, F., Peres, N., Novoselov, K. & Geim, A. The electronic properties of graphene. Reviews of Modern Physics 81, 109–162 (2009).CrossRef Castro Neto, A., Guinea, F., Peres, N., Novoselov, K. & Geim, A. The electronic properties of graphene. Reviews of Modern Physics 81, 109–162 (2009).CrossRef
4.
Zurück zum Zitat Park, C., Giustino, F., Spataru, C., Cohen, M. & Louie, S. Angle-resolved photoemission spectra of graphene from first-principles calculations. Nano letters 9, 4234–4239 (2009).CrossRef Park, C., Giustino, F., Spataru, C., Cohen, M. & Louie, S. Angle-resolved photoemission spectra of graphene from first-principles calculations. Nano letters 9, 4234–4239 (2009).CrossRef
5.
Zurück zum Zitat Borghi, G., Polini, M., Asgari, R. & MacDonald, A. Fermi velocity enhancement in monolayer and bilayer graphene. Solid State Communications 149, 1117–1122 (2009).CrossRef Borghi, G., Polini, M., Asgari, R. & MacDonald, A. Fermi velocity enhancement in monolayer and bilayer graphene. Solid State Communications 149, 1117–1122 (2009).CrossRef
6.
Zurück zum Zitat Peres, N. Colloquium: The transport properties of graphene: An introduction. Reviews of Modern Physics 82, 2673 (2010).CrossRef Peres, N. Colloquium: The transport properties of graphene: An introduction. Reviews of Modern Physics 82, 2673 (2010).CrossRef
7.
Zurück zum Zitat Brey, L. & Fertig, H. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B 73, 235411 (2006).CrossRef Brey, L. & Fertig, H. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B 73, 235411 (2006).CrossRef
8.
Zurück zum Zitat Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B 54, 17954–17961 (1996).CrossRef Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B 54, 17954–17961 (1996).CrossRef
9.
Zurück zum Zitat Son, Y., Cohen, M. & Louie, S. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).CrossRef Son, Y., Cohen, M. & Louie, S. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).CrossRef
10.
Zurück zum Zitat Barone, V., Hod, O. & Scuseria, G. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6, 2748–2754 (2006).CrossRef Barone, V., Hod, O. & Scuseria, G. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6, 2748–2754 (2006).CrossRef
11.
Zurück zum Zitat Ando, T., Fowler, A. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).CrossRef Ando, T., Fowler, A. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).CrossRef
12.
Zurück zum Zitat Piscanec, S., Lazzeri, M., Mauri, F. & Ferrari, A. Optical phonons of graphene and nanotubes. The European Physical Journal-Special Topics 148, 159–170 (2007).CrossRef Piscanec, S., Lazzeri, M., Mauri, F. & Ferrari, A. Optical phonons of graphene and nanotubes. The European Physical Journal-Special Topics 148, 159–170 (2007).CrossRef
13.
Zurück zum Zitat Charlier, J.C., Eklund, P., Zhu, J. & Ferrari, A. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Carbon Nanotubes, 673–709 (2008). Charlier, J.C., Eklund, P., Zhu, J. & Ferrari, A. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Carbon Nanotubes, 673–709 (2008).
14.
Zurück zum Zitat Hwang, E. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B 77, 115449 (2008).CrossRef Hwang, E. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B 77, 115449 (2008).CrossRef
15.
Zurück zum Zitat Efetov, D.K. & Kim, P. Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities. Physical Review Letters 105, 256805 (2010).CrossRef Efetov, D.K. & Kim, P. Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities. Physical Review Letters 105, 256805 (2010).CrossRef
16.
Zurück zum Zitat Chen, J., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology 3, 206–209 (2008).CrossRef Chen, J., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology 3, 206–209 (2008).CrossRef
17.
Zurück zum Zitat Zou, K., Hong, X., Keefer, D. & Zhu, J. Deposition of high-quality HfO2 on graphene and the effect of remote oxide phonon scattering. Physical Review Letters 105, 126601 (2010).CrossRef Zou, K., Hong, X., Keefer, D. & Zhu, J. Deposition of high-quality HfO2 on graphene and the effect of remote oxide phonon scattering. Physical Review Letters 105, 126601 (2010).CrossRef
18.
Zurück zum Zitat Fischetti, M., Neumayer, D. & Cartier, E. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: The role of remote phonon scattering. Journal of Applied Physics 90, 4587–4608 (2001).CrossRef Fischetti, M., Neumayer, D. & Cartier, E. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: The role of remote phonon scattering. Journal of Applied Physics 90, 4587–4608 (2001).CrossRef
19.
Zurück zum Zitat Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Physical Review B 77, 195415 (2008).CrossRef Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Physical Review B 77, 195415 (2008).CrossRef
20.
Zurück zum Zitat Deal, B. The current understanding of charges in the thermally oxidized silicon structure. Journal of the Electrochemical Society 121, 198C (1974).CrossRef Deal, B. The current understanding of charges in the thermally oxidized silicon structure. Journal of the Electrochemical Society 121, 198C (1974).CrossRef
21.
Zurück zum Zitat Zhuravlev, L. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 173, 1–38 (2000).CrossRef Zhuravlev, L. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 173, 1–38 (2000).CrossRef
22.
Zurück zum Zitat Romero, H.E. et al. n-Type behavior of graphene supported on Si/SiO(2) substrates. ACS NANO 2, 2037–44 (2008).CrossRef Romero, H.E. et al. n-Type behavior of graphene supported on Si/SiO(2) substrates. ACS NANO 2, 2037–44 (2008).CrossRef
23.
Zurück zum Zitat Kim, W. et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett 3, 193–198 (2003).CrossRef Kim, W. et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett 3, 193–198 (2003).CrossRef
24.
Zurück zum Zitat Aguirre, C. et al. The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors. Adv. Mater. 21, 3087–3091 (2009).CrossRef Aguirre, C. et al. The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors. Adv. Mater. 21, 3087–3091 (2009).CrossRef
25.
Zurück zum Zitat Adam, S., Hwang, E., Galitski, V. & Das Sarma, S. A self-consistent theory for graphene transport. Proceedings of the National Academy of Sciences 104, 18392 (2007).CrossRef Adam, S., Hwang, E., Galitski, V. & Das Sarma, S. A self-consistent theory for graphene transport. Proceedings of the National Academy of Sciences 104, 18392 (2007).CrossRef
26.
Zurück zum Zitat Hwang, E., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Physical Review Letters 98, 186806 (2007).CrossRef Hwang, E., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Physical Review Letters 98, 186806 (2007).CrossRef
27.
Zurück zum Zitat Ando, T. Screening effect and impurity scattering in monolayer graphene. Journal of the Physical Society of Japan 75, 074716 (2006). Ando, T. Screening effect and impurity scattering in monolayer graphene. Journal of the Physical Society of Japan 75, 074716 (2006).
28.
Zurück zum Zitat Nomura, K. & MacDonald, A. Quantum transport of massless dirac fermions. Physical Review Letters 98, 076602 (2007). Nomura, K. & MacDonald, A. Quantum transport of massless dirac fermions. Physical Review Letters 98, 076602 (2007).
29.
Zurück zum Zitat Hong, X., Zou, K. & Zhu, J. Quantum scattering time and its implications on scattering sources in graphene. Physical Review B 80, 241415 (2009).CrossRef Hong, X., Zou, K. & Zhu, J. Quantum scattering time and its implications on scattering sources in graphene. Physical Review B 80, 241415 (2009).CrossRef
30.
Zurück zum Zitat Chen, J. et al. Charged-impurity scattering in graphene. Nature Physics 4, 377–381 (2008).CrossRef Chen, J. et al. Charged-impurity scattering in graphene. Nature Physics 4, 377–381 (2008).CrossRef
31.
Zurück zum Zitat Shon, N.H. & Ando, T. Quantum transport in two-dimensional graphite system. Journal of the Physical Society of Japan 67, 2421–2429 (1998).CrossRef Shon, N.H. & Ando, T. Quantum transport in two-dimensional graphite system. Journal of the Physical Society of Japan 67, 2421–2429 (1998).CrossRef
32.
Zurück zum Zitat Monteverde, M. et al. Transport and Elastic Scattering Times as Probes of the Nature of Impurity Scattering in Single-Layer and Bilayer Graphene. Physical Review Letters 104, 126801 (2010).CrossRef Monteverde, M. et al. Transport and Elastic Scattering Times as Probes of the Nature of Impurity Scattering in Single-Layer and Bilayer Graphene. Physical Review Letters 104, 126801 (2010).CrossRef
33.
Zurück zum Zitat Dean, C. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 5, 722–726 (2010).CrossRef Dean, C. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 5, 722–726 (2010).CrossRef
34.
Zurück zum Zitat Bolotin, K. et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 351–355 (2008).CrossRef Bolotin, K. et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 351–355 (2008).CrossRef
35.
Zurück zum Zitat Du, X., Skachko, I., Barker, A. & Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nature Nanotechnology 3, 491–495 (2008).CrossRef Du, X., Skachko, I., Barker, A. & Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nature Nanotechnology 3, 491–495 (2008).CrossRef
36.
Zurück zum Zitat Zhang, Y., Brar, V., Girit, C., Zettl, A. & Crommie, M. Origin of spatial charge inhomogeneity in graphene. Nature Physics 5, 722–726 (2009).CrossRef Zhang, Y., Brar, V., Girit, C., Zettl, A. & Crommie, M. Origin of spatial charge inhomogeneity in graphene. Nature Physics 5, 722–726 (2009).CrossRef
37.
Zurück zum Zitat Deshpande, A., Bao, W., Miao, F., Lau, C. & LeRoy, B. Spatially resolved spectroscopy of monolayer graphene on SiO2. Physical Review B 79, 205411 (2009).CrossRef Deshpande, A., Bao, W., Miao, F., Lau, C. & LeRoy, B. Spatially resolved spectroscopy of monolayer graphene on SiO2. Physical Review B 79, 205411 (2009).CrossRef
38.
Zurück zum Zitat Stolyarova, E. et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proceedings of the National Academy of Sciences 104, 9209 (2007).CrossRef Stolyarova, E. et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proceedings of the National Academy of Sciences 104, 9209 (2007).CrossRef
39.
Zurück zum Zitat Stauber, T., Peres, N. & Guinea, F. Electronic transport in graphene: A semiclassical approach including midgap states. Phys. Rev. B 76, 205423 (2007).CrossRef Stauber, T., Peres, N. & Guinea, F. Electronic transport in graphene: A semiclassical approach including midgap states. Phys. Rev. B 76, 205423 (2007).CrossRef
40.
Zurück zum Zitat Wehling, T.O., Katsnelson, M.I. & Lichtenstein, A.I. Adsorbates on graphene: Impurity states and electron scattering. Chem Phys Lett 476, 125–134 (2009).CrossRef Wehling, T.O., Katsnelson, M.I. & Lichtenstein, A.I. Adsorbates on graphene: Impurity states and electron scattering. Chem Phys Lett 476, 125–134 (2009).CrossRef
41.
Zurück zum Zitat Chen, J.-H., Cullen, W., Jang, C., Fuhrer, M. & Williams, E. Defect Scattering in Graphene. Phys. Rev. Lett. 102, 236805 (2009).CrossRef Chen, J.-H., Cullen, W., Jang, C., Fuhrer, M. & Williams, E. Defect Scattering in Graphene. Phys. Rev. Lett. 102, 236805 (2009).CrossRef
42.
Zurück zum Zitat Ni, Z. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano letters 10, 3868–3872 (2010).CrossRef Ni, Z. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano letters 10, 3868–3872 (2010).CrossRef
43.
Zurück zum Zitat Hong, X., Cheng, S.-H., Herding, C. & Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 83, 085410 (2011).CrossRef Hong, X., Cheng, S.-H., Herding, C. & Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 83, 085410 (2011).CrossRef
44.
Zurück zum Zitat Lucchese, M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).CrossRef Lucchese, M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).CrossRef
45.
Zurück zum Zitat Katsnelson, M. & Geim, A. Electron scattering on microscopic corrugations in graphene. Philosophical Transactions A 366, 195 (2008).CrossRef Katsnelson, M. & Geim, A. Electron scattering on microscopic corrugations in graphene. Philosophical Transactions A 366, 195 (2008).CrossRef
46.
Zurück zum Zitat Geringer, V. et al. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2. Physical Review Letters 102, 076102 (2009).CrossRef Geringer, V. et al. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2. Physical Review Letters 102, 076102 (2009).CrossRef
47.
Zurück zum Zitat Cullen, W.G. et al. High-Fidelity Conformation of Graphene to SiO2 Topographic Features. Phys Rev Lett 105, 215504 (2010).CrossRef Cullen, W.G. et al. High-Fidelity Conformation of Graphene to SiO2 Topographic Features. Phys Rev Lett 105, 215504 (2010).CrossRef
48.
Zurück zum Zitat Meyer, J.C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).CrossRef Meyer, J.C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).CrossRef
49.
Zurück zum Zitat Lui, C., Liu, L., Mak, K., Flynn, G. & Heinz, T. Ultraflat graphene. Nature 462, 339 (2009). Lui, C., Liu, L., Mak, K., Flynn, G. & Heinz, T. Ultraflat graphene. Nature 462, 339 (2009).
50.
Zurück zum Zitat Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature nanotechnology 4, 562–566 (2009).CrossRef Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature nanotechnology 4, 562–566 (2009).CrossRef
51.
Zurück zum Zitat Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials 6, 652–655 (2007).CrossRef Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials 6, 652–655 (2007).CrossRef
52.
Zurück zum Zitat Lohmann, T., Von Klitzing, K. & Smet, J. Four-Terminal Magneto-Transport in Graphene pn Junctions Created by Spatially Selective Doping. Nano letters 9, 1973–1979 (2009).CrossRef Lohmann, T., Von Klitzing, K. & Smet, J. Four-Terminal Magneto-Transport in Graphene pn Junctions Created by Spatially Selective Doping. Nano letters 9, 1973–1979 (2009).CrossRef
53.
Zurück zum Zitat Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters 9, 1752–1758 (2009).CrossRef Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters 9, 1752–1758 (2009).CrossRef
54.
Zurück zum Zitat Pi, K. et al. Electronic doping and scattering by transition metals on graphene. Physical Review B 80, 075406 (2009).CrossRef Pi, K. et al. Electronic doping and scattering by transition metals on graphene. Physical Review B 80, 075406 (2009).CrossRef
55.
Zurück zum Zitat Wehling, T. et al. Molecular doping of graphene. Nano Lett 8, 173-177 (2008).CrossRef Wehling, T. et al. Molecular doping of graphene. Nano Lett 8, 173-177 (2008).CrossRef
56.
Zurück zum Zitat Leenaerts, O., Partoens, B. & Peeters, F. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Physical Review B 77, 125416 (2008).CrossRef Leenaerts, O., Partoens, B. & Peeters, F. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Physical Review B 77, 125416 (2008).CrossRef
57.
Zurück zum Zitat Chen, W., Chen, S., Qi, D.C., Gao, X.Y. & Wee, A.T.S. Surface transfer p-type doping of epitaxial graphene. Journal of the American Chemical Society 129, 10418–10422 (2007).CrossRef Chen, W., Chen, S., Qi, D.C., Gao, X.Y. & Wee, A.T.S. Surface transfer p-type doping of epitaxial graphene. Journal of the American Chemical Society 129, 10418–10422 (2007).CrossRef
58.
Zurück zum Zitat Choi, J., Lee, H., Kim, K., Kim, B. & Kim, S. Chemical Doping of Epitaxial Graphene by Organic Free Radicals. The Journal of Physical Chemistry Letters 1, 505–509 (2009).CrossRef Choi, J., Lee, H., Kim, K., Kim, B. & Kim, S. Chemical Doping of Epitaxial Graphene by Organic Free Radicals. The Journal of Physical Chemistry Letters 1, 505–509 (2009).CrossRef
59.
Zurück zum Zitat Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 5, 574 (2010).CrossRef Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 5, 574 (2010).CrossRef
60.
Zurück zum Zitat Park, H., Rowehl, J.A., Kim, K.K., Bulovic, V. & Kong, J. Doped graphene electrodes for organic solar cells. Nanotechnology 21, 505204 (2010).CrossRef Park, H., Rowehl, J.A., Kim, K.K., Bulovic, V. & Kong, J. Doped graphene electrodes for organic solar cells. Nanotechnology 21, 505204 (2010).CrossRef
61.
Zurück zum Zitat Gomez De Arco, L. et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS nano 4, 2865–2873 (2010).CrossRef Gomez De Arco, L. et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS nano 4, 2865–2873 (2010).CrossRef
62.
Zurück zum Zitat Yang, Y. & Murali, R. Impact of size effect on graphene nanoribbon transport. Electron Device Letters, IEEE 31, 237–239 (2010).CrossRef Yang, Y. & Murali, R. Impact of size effect on graphene nanoribbon transport. Electron Device Letters, IEEE 31, 237–239 (2010).CrossRef
63.
Zurück zum Zitat Campos-Delgado, J. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Letters 8, 2773–2778 (2008).CrossRef Campos-Delgado, J. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Letters 8, 2773–2778 (2008).CrossRef
64.
Zurück zum Zitat Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008).CrossRef Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008).CrossRef
65.
Zurück zum Zitat Kosynkin, D. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).CrossRef Kosynkin, D. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).CrossRef
66.
Zurück zum Zitat Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).CrossRef Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).CrossRef
67.
Zurück zum Zitat Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2011). Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2011).
68.
Zurück zum Zitat Han, M., Brant, J. & Kim, P. Electron transport in disordered graphene nanoribbons. Physical review letters 104, 056801 (2010).CrossRef Han, M., Brant, J. & Kim, P. Electron transport in disordered graphene nanoribbons. Physical review letters 104, 056801 (2010).CrossRef
69.
Zurück zum Zitat Gallagher, P., Todd, K. & Goldhaber-Gordon, D. Disorder-induced gap behavior in graphene nanoribbons. Physical Review B 81, 115409 (2010).CrossRef Gallagher, P., Todd, K. & Goldhaber-Gordon, D. Disorder-induced gap behavior in graphene nanoribbons. Physical Review B 81, 115409 (2010).CrossRef
70.
Zurück zum Zitat Stampfer, C. et al. Energy gaps in etched graphene nanoribbons. Phys Rev Lett 102, 056403 (2009).CrossRef Stampfer, C. et al. Energy gaps in etched graphene nanoribbons. Phys Rev Lett 102, 056403 (2009).CrossRef
71.
Zurück zum Zitat Han, M.Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters 98, 206805 (2007).CrossRef Han, M.Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters 98, 206805 (2007).CrossRef
72.
Zurück zum Zitat Evaldsson, M., Zozoulenko, I.V., Xu, H. & Heinzel, T. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Physical Review B 78, 161407 (2008).CrossRef Evaldsson, M., Zozoulenko, I.V., Xu, H. & Heinzel, T. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Physical Review B 78, 161407 (2008).CrossRef
73.
Zurück zum Zitat Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature physics 4, 144–148 (2008).CrossRef Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature physics 4, 144–148 (2008).CrossRef
74.
Zurück zum Zitat Sols, F., Guinea, F. & Neto, A.H.C. Coulomb blockade in graphene nanoribbons. Physical Review Letters 99, 166803 (2007).CrossRef Sols, F., Guinea, F. & Neto, A.H.C. Coulomb blockade in graphene nanoribbons. Physical Review Letters 99, 166803 (2007).CrossRef
75.
Zurück zum Zitat Mucciolo, E.R., Castro Neto, A. & Lewenkopf, C.H. Conductance quantization and transport gaps in disordered graphene nanoribbons. Physical Review B 79, 075407 (2009).CrossRef Mucciolo, E.R., Castro Neto, A. & Lewenkopf, C.H. Conductance quantization and transport gaps in disordered graphene nanoribbons. Physical Review B 79, 075407 (2009).CrossRef
76.
Zurück zum Zitat Querlioz, D. et al. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Applied Physics Letters 92, 042108 (2008).CrossRef Querlioz, D. et al. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Applied Physics Letters 92, 042108 (2008).CrossRef
77.
Zurück zum Zitat Martin, I. & Blanter, Y.M. Transport in disordered graphene nanoribbons. Physical Review B 79, 235132 (2009).CrossRef Martin, I. & Blanter, Y.M. Transport in disordered graphene nanoribbons. Physical Review B 79, 235132 (2009).CrossRef
78.
Zurück zum Zitat Adam, S., Cho, S., Fuhrer, M. & Das Sarma, S. Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons. Physical Review Letters 101, 046404 (2008).CrossRef Adam, S., Cho, S., Fuhrer, M. & Das Sarma, S. Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons. Physical Review Letters 101, 046404 (2008).CrossRef
79.
Zurück zum Zitat Zou, K. & Zhu, J. Transport in gapped bilayer graphene: the role of potential fluctuations. Physical Review B 82, 081407 (2010).CrossRef Zou, K. & Zhu, J. Transport in gapped bilayer graphene: the role of potential fluctuations. Physical Review B 82, 081407 (2010).CrossRef
80.
Zurück zum Zitat Taychatanapat, T. & Jarillo-Herrero, P. Electronic Transport in Dual-Gated Bilayer Graphene at Large Displacement Fields. Physical Review Letters 105, 166601 (2010).CrossRef Taychatanapat, T. & Jarillo-Herrero, P. Electronic Transport in Dual-Gated Bilayer Graphene at Large Displacement Fields. Physical Review Letters 105, 166601 (2010).CrossRef
81.
Zurück zum Zitat Yan, J. & Fuhrer, M.S. Charge Transport in Dual Gated Bilayer Graphene with Corbino Geometry. Nano Letters 10, 4521–4525 (2010).CrossRef Yan, J. & Fuhrer, M.S. Charge Transport in Dual Gated Bilayer Graphene with Corbino Geometry. Nano Letters 10, 4521–4525 (2010).CrossRef
82.
Zurück zum Zitat Chen, Z., Lin, Y.-M., Rooks, M.J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).CrossRef Chen, Z., Lin, Y.-M., Rooks, M.J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).CrossRef
83.
Zurück zum Zitat Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical review letters 100, 206803 (2008).CrossRef Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical review letters 100, 206803 (2008).CrossRef
84.
Zurück zum Zitat Basu, D., Gilbert, M., Register, L., Banerjee, S. & MacDonald, A. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors. Applied Physics Letters 92, 042114 (2008).CrossRef Basu, D., Gilbert, M., Register, L., Banerjee, S. & MacDonald, A. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors. Applied Physics Letters 92, 042114 (2008).CrossRef
85.
Zurück zum Zitat Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Physical Review B 78, 205403 (2008).CrossRef Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Physical Review B 78, 205403 (2008).CrossRef
86.
Zurück zum Zitat Murali, R., Yang, Y., Brenner, K., Beck, T. & Meindl, J.D. Breakdown current density of graphene nanoribbons. Applied Physics Letters 94, 243114 (2009).CrossRef Murali, R., Yang, Y., Brenner, K., Beck, T. & Meindl, J.D. Breakdown current density of graphene nanoribbons. Applied Physics Letters 94, 243114 (2009).CrossRef
87.
Zurück zum Zitat First, P. et al. Epitaxial Graphenes on Silicon Carbide. MRS Bulletin 35, 296 (2010).CrossRef First, P. et al. Epitaxial Graphenes on Silicon Carbide. MRS Bulletin 35, 296 (2010).CrossRef
88.
Zurück zum Zitat Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 9, 30–35 (2008).CrossRef Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 9, 30–35 (2008).CrossRef
89.
Zurück zum Zitat Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312–1314 (2009).CrossRef Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312–1314 (2009).CrossRef
90.
Zurück zum Zitat Emtsev, K.V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials 8, 203–207 (2009).CrossRef Emtsev, K.V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials 8, 203–207 (2009).CrossRef
91.
Zurück zum Zitat Jobst, J. et al. Quantum oscillations and quantum Hall effect in epitaxial graphene. Physical Review B 81, 195434 (2010).CrossRef Jobst, J. et al. Quantum oscillations and quantum Hall effect in epitaxial graphene. Physical Review B 81, 195434 (2010).CrossRef
92.
Zurück zum Zitat Shen, T. et al. Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001). Applied Physics Letters 95, 172105 (2009).CrossRef Shen, T. et al. Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001). Applied Physics Letters 95, 172105 (2009).CrossRef
93.
Zurück zum Zitat Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Physical Review Letters 103, 246804 (2009).CrossRef Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Physical Review Letters 103, 246804 (2009).CrossRef
94.
Zurück zum Zitat Miller, D.L. et al. Observing the Quantization of Zero Mass Carriers in Graphene. Science 324, 924–927 (2009).CrossRef Miller, D.L. et al. Observing the Quantization of Zero Mass Carriers in Graphene. Science 324, 924–927 (2009).CrossRef
95.
Zurück zum Zitat Orlita, M. et al. Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Physical Review Letters 101, 267601 (2008).CrossRef Orlita, M. et al. Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Physical Review Letters 101, 267601 (2008).CrossRef
96.
Zurück zum Zitat Wu, X. et al. Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Applied Physics Letters 95, 223108 (2009).CrossRef Wu, X. et al. Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Applied Physics Letters 95, 223108 (2009).CrossRef
97.
Zurück zum Zitat Lee, D.S. et al. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano letters 8, 4320–4325 (2008).CrossRef Lee, D.S. et al. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano letters 8, 4320–4325 (2008).CrossRef
98.
Zurück zum Zitat Yazyev, O.V. & Louie, S.G. Electronic transport in polycrystalline graphene. Nature Materials 9, 806–809 (2010).CrossRef Yazyev, O.V. & Louie, S.G. Electronic transport in polycrystalline graphene. Nature Materials 9, 806–809 (2010).CrossRef
99.
Zurück zum Zitat Huang, P.Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–92 (2011).CrossRef Huang, P.Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–92 (2011).CrossRef
100.
Zurück zum Zitat Nienhaus, H., Kampen, T. & Mönch, W. Phonons in 3 C-, 4 H-, and 6 H-SiC. Surface science 324, L328–L332 (1995).CrossRef Nienhaus, H., Kampen, T. & Mönch, W. Phonons in 3 C-, 4 H-, and 6 H-SiC. Surface science 324, L328–L332 (1995).CrossRef
101.
Zurück zum Zitat Hwang, J., Kuo, C., Chen, L. & Chen, K. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 21, 465705 (2010).CrossRef Hwang, J., Kuo, C., Chen, L. & Chen, K. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 21, 465705 (2010).CrossRef
102.
Zurück zum Zitat Li, X. et al. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society 133, 2816–2819 (2011). Li, X. et al. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society 133, 2816–2819 (2011).
103.
Zurück zum Zitat Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology 3, 654–659 (2008).CrossRef Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology 3, 654–659 (2008).CrossRef
104.
Zurück zum Zitat Tse, W. & Das Sarma, S. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B 79, 235406 (2009). Tse, W. & Das Sarma, S. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B 79, 235406 (2009).
105.
Zurück zum Zitat Bistritzer, R. & MacDonald, A. Hydrodynamic theory of transport in doped graphene. Physical Review B 80, 085109 (2009).CrossRef Bistritzer, R. & MacDonald, A. Hydrodynamic theory of transport in doped graphene. Physical Review B 80, 085109 (2009).CrossRef
106.
Zurück zum Zitat Barreiro, A., Lazzeri, M., Moser, J., Mauri, F. & Bachtold, A. Transport properties of graphene in the high-current limit. Physical Review Letters 103, 076601 (2009).CrossRef Barreiro, A., Lazzeri, M., Moser, J., Mauri, F. & Bachtold, A. Transport properties of graphene in the high-current limit. Physical Review Letters 103, 076601 (2009).CrossRef
107.
Zurück zum Zitat DaSilva, A., Zou, K., Jain, J. & Zhu, J. Mechanism for current saturation and energy dissipation in graphene transistors. Physical Review Letters 104, 236601 (2010). DaSilva, A., Zou, K., Jain, J. & Zhu, J. Mechanism for current saturation and energy dissipation in graphene transistors. Physical Review Letters 104, 236601 (2010).
108.
Zurück zum Zitat Perebeinos, V. & Avouris, P. Inelastic scattering and current saturation in graphene. Phys. Rev. B 81, 195442 (2010).CrossRef Perebeinos, V. & Avouris, P. Inelastic scattering and current saturation in graphene. Phys. Rev. B 81, 195442 (2010).CrossRef
109.
Zurück zum Zitat Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano letters 9, 1883–1888 (2009).CrossRef Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano letters 9, 1883–1888 (2009).CrossRef
110.
Zurück zum Zitat Yao, Z., Kane, C. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Physical Review Letters 84, 2941–4 (2000).CrossRef Yao, Z., Kane, C. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Physical Review Letters 84, 2941–4 (2000).CrossRef
111.
Zurück zum Zitat Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).CrossRef Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).CrossRef
112.
Zurück zum Zitat Park, J.Y. et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Letters 4, 517–520 (2004).CrossRef Park, J.Y. et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Letters 4, 517–520 (2004).CrossRef
113.
Zurück zum Zitat Canali, C., Majni, G., Minder, R. & Ottaviani, G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. Electron Devices, IEEE Transactions on 22, 1045–1047 (1975).CrossRef Canali, C., Majni, G., Minder, R. & Ottaviani, G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. Electron Devices, IEEE Transactions on 22, 1045–1047 (1975).CrossRef
114.
Zurück zum Zitat Meric, I. et al. Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current–Voltage Measurements. Nano Letters 11, 1093 (2011).CrossRef Meric, I. et al. Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current–Voltage Measurements. Nano Letters 11, 1093 (2011).CrossRef
115.
Zurück zum Zitat Mak, K.F., Lui, C.H. & Heinz, T.F. Measurement of the thermal conductance of the graphene/SiO2 interface. Applied Physics Letters 97, 221904 (2010).CrossRef Mak, K.F., Lui, C.H. & Heinz, T.F. Measurement of the thermal conductance of the graphene/SiO2 interface. Applied Physics Letters 97, 221904 (2010).CrossRef
116.
Zurück zum Zitat Haugen, H., Huertas-Hernando, D. & Brataas, A. Spin transport in proximity-induced ferromagnetic graphene. Physical Review B 77, 115406 (2008).CrossRef Haugen, H., Huertas-Hernando, D. & Brataas, A. Spin transport in proximity-induced ferromagnetic graphene. Physical Review B 77, 115406 (2008).CrossRef
117.
Zurück zum Zitat Hong, X., Posadas, A., Zou, K., Ahn, C.H. & Zhu, J. High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides. Physical Review Letters 102, 136808 (2009).CrossRef Hong, X., Posadas, A., Zou, K., Ahn, C.H. & Zhu, J. High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides. Physical Review Letters 102, 136808 (2009).CrossRef
118.
Zurück zum Zitat Zheng, Y. et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Applied Physics Letters 94, 163505 (2009).CrossRef Zheng, Y. et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Applied Physics Letters 94, 163505 (2009).CrossRef
119.
Zurück zum Zitat Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9, 3318–3322 (2009).CrossRef Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9, 3318–3322 (2009).CrossRef
Zurück zum Zitat N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Brooks Cole, 1976). N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Brooks Cole, 1976).
Zurück zum Zitat C. Weisbuch, and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, 1991). C. Weisbuch, and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, 1991).
Zurück zum Zitat Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, edited by Ado Jorio, Gene Dresselhaus and Milred S. Dresselhaus, (Springer, 2008). Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, edited by Ado Jorio, Gene Dresselhaus and Milred S. Dresselhaus, (Springer, 2008).
Zurück zum Zitat B. I. Shklovskii, and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, 1984). B. I. Shklovskii, and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, 1984).
Zurück zum Zitat Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, edited by H. Grabert, and M. H. Devoret, (Plenum Press, New York, 1992). Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, edited by H. Grabert, and M. H. Devoret, (Plenum Press, New York, 1992).
Metadaten
Titel
Electronic Transport in Graphene
verfasst von
Jun Zhu
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-0548-1_2