Skip to main content

2012 | OriginalPaper | Buchkapitel

3. Graphene Transistors

verfasst von : Raghu Murali

Erschienen in: Graphene Nanoelectronics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter begins with an overview of digital and analog semiconductor technology. Following this, tradeoffs between various device designs are discussed for Si FETs. Analog (RF) applications require a low access resistance and small mobility degradation from dielectrics—the former is discussed in detail in this chapter, while the latter is the topic of Chap. 9. Digital FETs need certain criteria to be met—foremost amongst them being bandgap opening and complementary operation. Both these topics are discussed in detail in this chapter. Geometrical scaling of graphene FETs—including width and length scaling—is discussed along with implications for edge-scattering and methods to reduce it. Circuit implementations of graphene FETs are looked into including mixers, frequency multipliers, and inverters. A few non-FET structures are also looked at such as the Klein tunneling transistor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. S. Novoselov, et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature vol. 438, pp. 197–200 (2005).CrossRef K. S. Novoselov, et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature vol. 438, pp. 197–200 (2005).CrossRef
2.
Zurück zum Zitat K. S. Novoselov, et al., “Electric field effect in atomically thin carbon films,” Science vol. 306, pp. 666–669 (2004).CrossRef K. S. Novoselov, et al., “Electric field effect in atomically thin carbon films,” Science vol. 306, pp. 666–669 (2004).CrossRef
3.
Zurück zum Zitat C. Berger, et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science vol. 312, pp. 1191–1196 (2006).CrossRef C. Berger, et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science vol. 312, pp. 1191–1196 (2006).CrossRef
4.
Zurück zum Zitat F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature,” Nano Letters vol. 10, pp. 715–718 (2010).CrossRef F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature,” Nano Letters vol. 10, pp. 715–718 (2010).CrossRef
5.
Zurück zum Zitat T. Fang, A. Konar, H. L. Xing, and D. Jena, “Carrier statistics and quantum capacitance of graphene sheets and ribbons,” Applied Physics Letters vol. 91, 092109 (2007).CrossRef T. Fang, A. Konar, H. L. Xing, and D. Jena, “Carrier statistics and quantum capacitance of graphene sheets and ribbons,” Applied Physics Letters vol. 91, 092109 (2007).CrossRef
6.
Zurück zum Zitat W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Physical Review B vol. 80, 235402 (2009).CrossRef W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Physical Review B vol. 80, 235402 (2009).CrossRef
7.
Zurück zum Zitat G. Baccarani, M. R. Wordeman, and R. H. Dennard, “Generalized Scaling Theory and Its Application to a 1/4 Micrometer Mosfet Design,” IEEE Transactions on Electron Devices vol. 31, pp. 452–462 (1984).CrossRef G. Baccarani, M. R. Wordeman, and R. H. Dennard, “Generalized Scaling Theory and Its Application to a 1/4 Micrometer Mosfet Design,” IEEE Transactions on Electron Devices vol. 31, pp. 452–462 (1984).CrossRef
8.
Zurück zum Zitat S. I. Association, “International Technology Roadmap for Semiconductors,” (2007). S. I. Association, “International Technology Roadmap for Semiconductors,” (2007).
9.
Zurück zum Zitat S. W. Keckler, et al., “A wire-delay scalable microprocessor architecture for high performance systems,” 2003 IEEE International Solid-State Circuits Conference vol. 46, pp. 168–169 (2003).CrossRef S. W. Keckler, et al., “A wire-delay scalable microprocessor architecture for high performance systems,” 2003 IEEE International Solid-State Circuits Conference vol. 46, pp. 168–169 (2003).CrossRef
10.
Zurück zum Zitat D. Geer, “Chip makers turn to multicore processors,” Computer vol. 38, pp. 11–13 (2005).CrossRef D. Geer, “Chip makers turn to multicore processors,” Computer vol. 38, pp. 11–13 (2005).CrossRef
11.
Zurück zum Zitat D. Hisamoto, et al., “FinFET - A self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices vol. 47, pp. 2320–2325 (2000).CrossRef D. Hisamoto, et al., “FinFET - A self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices vol. 47, pp. 2320–2325 (2000).CrossRef
12.
Zurück zum Zitat K. Boucart and A. M. Ionescu, “Double-gate tunnel FET with high-K gate dielectric,” IEEE Transactions on Electron Devices vol. 54, pp. 1725–1733 (2007).CrossRef K. Boucart and A. M. Ionescu, “Double-gate tunnel FET with high-K gate dielectric,” IEEE Transactions on Electron Devices vol. 54, pp. 1725–1733 (2007).CrossRef
13.
Zurück zum Zitat K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, “Impact ionization MOS (I-MOS) - Part I: Device and circuit simulations,” IEEE Transactions on Electron Devices vol. 52, pp. 69–76 (2005).CrossRef K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, “Impact ionization MOS (I-MOS) - Part I: Device and circuit simulations,” IEEE Transactions on Electron Devices vol. 52, pp. 69–76 (2005).CrossRef
14.
Zurück zum Zitat S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Letters vol. 8, pp. 405–410 (2007).CrossRef S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Letters vol. 8, pp. 405–410 (2007).CrossRef
15.
Zurück zum Zitat R. Murali, et al., “Breakdown current density of graphene nanoribbons,” Applied Physics Letters vol. 94, (2009). R. Murali, et al., “Breakdown current density of graphene nanoribbons,” Applied Physics Letters vol. 94, (2009).
16.
Zurück zum Zitat R. Murali, et al., “Resistivity of Graphene Nanoribbon Interconnects,” IEEE Electron Device Letters vol. 30, pp. 611–613 (2009).CrossRef R. Murali, et al., “Resistivity of Graphene Nanoribbon Interconnects,” IEEE Electron Device Letters vol. 30, pp. 611–613 (2009).CrossRef
17.
Zurück zum Zitat M. Y. Han, B. Ozyilmaz, Y. B. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Physical Review Letters vol. 98, 206805 (2007).CrossRef M. Y. Han, B. Ozyilmaz, Y. B. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Physical Review Letters vol. 98, 206805 (2007).CrossRef
18.
Zurück zum Zitat S. Y. Zhou, et al., “Substrate-induced bandgap opening in epitaxial graphene,” Nature Materials vol. 6, pp. 770–775 (2007).CrossRef S. Y. Zhou, et al., “Substrate-induced bandgap opening in epitaxial graphene,” Nature Materials vol. 6, pp. 770–775 (2007).CrossRef
19.
Zurück zum Zitat M. Sprinkle, et al., “Scalable templated growth of graphene nanoribbons on SiC,” Nature Nanotechnology vol. 5, pp. 727–731 (2010).CrossRef M. Sprinkle, et al., “Scalable templated growth of graphene nanoribbons on SiC,” Nature Nanotechnology vol. 5, pp. 727–731 (2010).CrossRef
20.
Zurück zum Zitat J. W. Bai, et al., “Graphene nanomesh,” Nature Nanotechnology vol. 5, pp. 190–194 (2010).CrossRef J. W. Bai, et al., “Graphene nanomesh,” Nature Nanotechnology vol. 5, pp. 190–194 (2010).CrossRef
21.
Zurück zum Zitat E. Rotenberg, et al., “Origin of the energy bandgap in epitaxial graphene,” Nature Materials vol. 7, pp. 258–259 (2008).CrossRef E. Rotenberg, et al., “Origin of the energy bandgap in epitaxial graphene,” Nature Materials vol. 7, pp. 258–259 (2008).CrossRef
22.
Zurück zum Zitat F. Schwierz, “Graphene transistors,” Nature Nanotechnology vol. 5, pp. 487–496 (2010).CrossRef F. Schwierz, “Graphene transistors,” Nature Nanotechnology vol. 5, pp. 487–496 (2010).CrossRef
23.
Zurück zum Zitat J. S. Moon, et al., “Top-Gated Epitaxial Graphene FETs on Si-Face SiC Wafers With a Peak Transconductance of 600 mS/mm,” IEEE Electron Device Letters vol. 31, pp. 260–262 (2010).CrossRef J. S. Moon, et al., “Top-Gated Epitaxial Graphene FETs on Si-Face SiC Wafers With a Peak Transconductance of 600 mS/mm,” IEEE Electron Device Letters vol. 31, pp. 260–262 (2010).CrossRef
24.
Zurück zum Zitat Y.-M. Lin, et al., “100-GHz Transistors from Wafer-Scale Epitaxial Graphene,” Science vol. 327, 662 (2010).CrossRef Y.-M. Lin, et al., “100-GHz Transistors from Wafer-Scale Epitaxial Graphene,” Science vol. 327, 662 (2010).CrossRef
25.
Zurück zum Zitat K. A. Jenkins, et al., “Graphene RF Transistor Performance,” ECS Transactions vol. 28, pp. 3–13 (2010).CrossRef K. A. Jenkins, et al., “Graphene RF Transistor Performance,” ECS Transactions vol. 28, pp. 3–13 (2010).CrossRef
26.
Zurück zum Zitat G. C. Liang, N. Neophytou, D. E. Nikonov, and M. S. Lundstrom, “Performance projections for ballistic graphene nanoribbon field-effect transistors,” IEEE Transactions on Electron Devices vol. 54, pp. 677–682 (2007).CrossRef G. C. Liang, N. Neophytou, D. E. Nikonov, and M. S. Lundstrom, “Performance projections for ballistic graphene nanoribbon field-effect transistors,” IEEE Transactions on Electron Devices vol. 54, pp. 677–682 (2007).CrossRef
27.
Zurück zum Zitat A. C. Ford, et al., “Diameter-Dependent Electron Mobility of InAs Nanowires,” Nano Letters vol. 9, pp. 360–365 (2009).CrossRef A. C. Ford, et al., “Diameter-Dependent Electron Mobility of InAs Nanowires,” Nano Letters vol. 9, pp. 360–365 (2009).CrossRef
28.
Zurück zum Zitat D. A. Areshkin, D. Gunlycke, and C. T. White, “Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects,” Nano Letters vol. 7, pp. 204–210 (2007).CrossRef D. A. Areshkin, D. Gunlycke, and C. T. White, “Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects,” Nano Letters vol. 7, pp. 204–210 (2007).CrossRef
29.
Zurück zum Zitat D. Gunlycke, D. A. Areshkin, and C. T. White, “Semiconducting graphene nanostrips with edge disorder,” Applied Physics Letters vol. 90, 142104 (2007).CrossRef D. Gunlycke, D. A. Areshkin, and C. T. White, “Semiconducting graphene nanostrips with edge disorder,” Applied Physics Letters vol. 90, 142104 (2007).CrossRef
30.
Zurück zum Zitat T. Fang, A. Konar, H. Xing, and D. Jena, “Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering,” Physical Review B vol. 78, 205403 (2008).CrossRef T. Fang, A. Konar, H. Xing, and D. Jena, “Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering,” Physical Review B vol. 78, 205403 (2008).CrossRef
31.
Zurück zum Zitat Y. X. Yang and R. Murali, “Impact of Size Effect on Graphene Nanoribbon Transport,” IEEE Electron Device Letters vol. 31, pp. 237–239 (2010).CrossRef Y. X. Yang and R. Murali, “Impact of Size Effect on Graphene Nanoribbon Transport,” IEEE Electron Device Letters vol. 31, pp. 237–239 (2010).CrossRef
32.
Zurück zum Zitat K. I. Bolotin, et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications vol. 146, pp. 351–355 (2008).CrossRef K. I. Bolotin, et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications vol. 146, pp. 351–355 (2008).CrossRef
33.
Zurück zum Zitat J. H. Chen, et al., “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology vol. 3, pp. 206–209 (2008).CrossRef J. H. Chen, et al., “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology vol. 3, pp. 206–209 (2008).CrossRef
34.
Zurück zum Zitat Y. W. Tan, et al., “Measurement of scattering rate and minimum conductivity in graphene,” Physical Review Letters vol. 99, 246803 (2007).CrossRef Y. W. Tan, et al., “Measurement of scattering rate and minimum conductivity in graphene,” Physical Review Letters vol. 99, 246803 (2007).CrossRef
35.
Zurück zum Zitat A. A. Balandin, et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters vol. 8, pp. 902–907 (2008).CrossRef A. A. Balandin, et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters vol. 8, pp. 902–907 (2008).CrossRef
36.
Zurück zum Zitat X. R. Wang, et al., “Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Physical Review Letters vol. 100, 206803 (2008).CrossRef X. R. Wang, et al., “Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Physical Review Letters vol. 100, 206803 (2008).CrossRef
37.
Zurück zum Zitat D. V. Kosynkin, et al., “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature vol. 458, pp. 872–876 (2009).CrossRef D. V. Kosynkin, et al., “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature vol. 458, pp. 872–876 (2009).CrossRef
38.
Zurück zum Zitat L. Jiao, et al., “Narrow graphene nanoribbons from carbon nanotubes,” Nature vol. 458, pp. 877–880 (2009).CrossRef L. Jiao, et al., “Narrow graphene nanoribbons from carbon nanotubes,” Nature vol. 458, pp. 877–880 (2009).CrossRef
39.
Zurück zum Zitat J. Cai, et al., “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature vol. 466, pp. 470–473 (2010).CrossRef J. Cai, et al., “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature vol. 466, pp. 470–473 (2010).CrossRef
40.
Zurück zum Zitat H. Xiang, et al., “”Narrow” Graphene Nanoribbons Made Easier by Partial Hydrogenation,” Nano Letters vol. 9, pp. 4025–4030 (2009).CrossRef H. Xiang, et al., “”Narrow” Graphene Nanoribbons Made Easier by Partial Hydrogenation,” Nano Letters vol. 9, pp. 4025–4030 (2009).CrossRef
41.
Zurück zum Zitat D. C. Elias, et al., “Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane,” Science vol. 323, pp. 610–613 (2009).CrossRef D. C. Elias, et al., “Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane,” Science vol. 323, pp. 610–613 (2009).CrossRef
42.
Zurück zum Zitat R. Balog, et al., “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nature Materials vol. 9, pp. 315–319 (2010).CrossRef R. Balog, et al., “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nature Materials vol. 9, pp. 315–319 (2010).CrossRef
43.
Zurück zum Zitat J. R. Williams, T. Low, M. S. Lundstrom, and C. M. Marcus, “Gate-controlled guiding of electrons in graphene,” Nature Nanotechnology vol. 6, pp. 222–225 (2011).CrossRef J. R. Williams, T. Low, M. S. Lundstrom, and C. M. Marcus, “Gate-controlled guiding of electrons in graphene,” Nature Nanotechnology vol. 6, pp. 222–225 (2011).CrossRef
44.
Zurück zum Zitat X. Wang and H. Dai, “Etching and narrowing of graphene from the edges,” Nature Chemistry vol. 2, pp. 661–665 (2010).CrossRef X. Wang and H. Dai, “Etching and narrowing of graphene from the edges,” Nature Chemistry vol. 2, pp. 661–665 (2010).CrossRef
45.
Zurück zum Zitat L. C. Campos, et al., “Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene,” Nano Letters vol. 9, pp. 2600–2604 (2009).CrossRef L. C. Campos, et al., “Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene,” Nano Letters vol. 9, pp. 2600–2604 (2009).CrossRef
46.
Zurück zum Zitat S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson, “Crystallographic Etching of Few-Layer Graphene,” Nano Letters vol. 8, pp. 1912–1915 (2008).CrossRef S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson, “Crystallographic Etching of Few-Layer Graphene,” Nano Letters vol. 8, pp. 1912–1915 (2008).CrossRef
47.
Zurück zum Zitat Z. Chen and J. Appenzeller, “Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-effect Transistor Devices,” IEEE International Electron Devices Meeting pp. 509–512 (2008). Z. Chen and J. Appenzeller, “Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-effect Transistor Devices,” IEEE International Electron Devices Meeting pp. 509–512 (2008).
48.
Zurück zum Zitat I. Meric, et al., “Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current–voltage Measurements,” Nano Letters vol. 11, pp. 1093–1097 (2011).CrossRef I. Meric, et al., “Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current–voltage Measurements,” Nano Letters vol. 11, pp. 1093–1097 (2011).CrossRef
49.
Zurück zum Zitat Y. Ouyang, H. Dai, and J. Guo, “Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material,” Nano Research vol. 3, pp. 8–15 (2010).CrossRef Y. Ouyang, H. Dai, and J. Guo, “Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material,” Nano Research vol. 3, pp. 8–15 (2010).CrossRef
50.
Zurück zum Zitat Y. Sui and J. Appenzeller, “Screening and Interlayer Coupling in Multilayer Graphene Field-Effect Transistors,” Nano Letters vol. 9, pp. 2973–2977 (2009).CrossRef Y. Sui and J. Appenzeller, “Screening and Interlayer Coupling in Multilayer Graphene Field-Effect Transistors,” Nano Letters vol. 9, pp. 2973–2977 (2009).CrossRef
51.
Zurück zum Zitat J. Hass, et al., “Why multilayer graphene on 4 H-SiC(000(1)over-bar) behaves like a single sheet of graphene,” Physical Review Letters vol. 100, 125504 (2008).CrossRef J. Hass, et al., “Why multilayer graphene on 4 H-SiC(000(1)over-bar) behaves like a single sheet of graphene,” Physical Review Letters vol. 100, 125504 (2008).CrossRef
52.
Zurück zum Zitat J. Martin, et al., “Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nature Physics vol. 4, pp. 144–148 (2008).CrossRef J. Martin, et al., “Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nature Physics vol. 4, pp. 144–148 (2008).CrossRef
53.
Zurück zum Zitat S. M. Sze, Physics of Semiconductor Devices: Wiley-Interscience, 1981. S. M. Sze, Physics of Semiconductor Devices: Wiley-Interscience, 1981.
54.
Zurück zum Zitat F. Schedin, et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials vol. 6, pp. 652–655 (2007).CrossRef F. Schedin, et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials vol. 6, pp. 652–655 (2007).CrossRef
55.
Zurück zum Zitat P. L. Levesque, et al., “Probing Charge Transfer at Surfaces Using Graphene Transistors,” Nano Letters vol. 11, pp. 132–137 (2010).CrossRef P. L. Levesque, et al., “Probing Charge Transfer at Surfaces Using Graphene Transistors,” Nano Letters vol. 11, pp. 132–137 (2010).CrossRef
56.
Zurück zum Zitat Y. Dan, et al., “Intrinsic Response of Graphene Vapor Sensors,” Nano Letters vol. 9, pp. 1472–1475 (2009).CrossRef Y. Dan, et al., “Intrinsic Response of Graphene Vapor Sensors,” Nano Letters vol. 9, pp. 1472–1475 (2009).CrossRef
57.
Zurück zum Zitat M. Ishigami, et al., “Atomic structure of graphene on SiO2,” Nano Letters vol. 7, pp. 1643–1648 (2007).CrossRef M. Ishigami, et al., “Atomic structure of graphene on SiO2,” Nano Letters vol. 7, pp. 1643–1648 (2007).CrossRef
58.
Zurück zum Zitat M. Lafkioti, et al., “Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions,” Nano Letters vol. 10, pp. 1149–1153 (2010).CrossRef M. Lafkioti, et al., “Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions,” Nano Letters vol. 10, pp. 1149–1153 (2010).CrossRef
59.
Zurück zum Zitat Z. Liu, A. A. Bol, and W. Haensch, “Large-Scale Graphene Transistors with Enhanced Performance and Reliability Based on Interface Engineering by Phenylsilane Self-Assembled Monolayers,” Nano Letters vol. 11, pp. 523–528 (2010).CrossRef Z. Liu, A. A. Bol, and W. Haensch, “Large-Scale Graphene Transistors with Enhanced Performance and Reliability Based on Interface Engineering by Phenylsilane Self-Assembled Monolayers,” Nano Letters vol. 11, pp. 523–528 (2010).CrossRef
60.
Zurück zum Zitat C. R. Dean, et al., “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology vol. 5, pp. 722–726 (2010).CrossRef C. R. Dean, et al., “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology vol. 5, pp. 722–726 (2010).CrossRef
61.
Zurück zum Zitat X. Hong, et al., “High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides,” Physical Review Letters vol. 102, 136808 (2009).CrossRef X. Hong, et al., “High-Mobility Few-Layer Graphene Field Effect Transistors Fabricated on Epitaxial Ferroelectric Gate Oxides,” Physical Review Letters vol. 102, 136808 (2009).CrossRef
62.
Zurück zum Zitat F. Chen, J. L. Xia, and N. J. Tao, “Ionic Screening of Charged-Impurity Scattering in Graphene,” Nano Letters vol. 9, pp. 1621–1625 (2009).CrossRef F. Chen, J. L. Xia, and N. J. Tao, “Ionic Screening of Charged-Impurity Scattering in Graphene,” Nano Letters vol. 9, pp. 1621–1625 (2009).CrossRef
63.
Zurück zum Zitat F. Chen, J. Xia, and N. Tao, “Ionic Screening of Charged-Impurity Scattering in Graphene,” Nano Letters vol. 9, pp. 1621–1625 (2009).CrossRef F. Chen, J. Xia, and N. Tao, “Ionic Screening of Charged-Impurity Scattering in Graphene,” Nano Letters vol. 9, pp. 1621–1625 (2009).CrossRef
64.
Zurück zum Zitat B. Guo, et al., “Controllable N-Doping of Graphene,” Nano Letters vol. 10, pp. 4975–4980 (2010).CrossRef B. Guo, et al., “Controllable N-Doping of Graphene,” Nano Letters vol. 10, pp. 4975–4980 (2010).CrossRef
65.
Zurück zum Zitat D. B. Farmer, et al., “Chemical Doping and Electron–hole Conduction Asymmetry in Graphene Devices,” Nano Letters vol. 9, pp. 388–392 (2009).CrossRef D. B. Farmer, et al., “Chemical Doping and Electron–hole Conduction Asymmetry in Graphene Devices,” Nano Letters vol. 9, pp. 388–392 (2009).CrossRef
66.
Zurück zum Zitat A. Kasry, et al., “Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes,” ACS Nano vol. 4, pp. 3839–3844 (2010).CrossRef A. Kasry, et al., “Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes,” ACS Nano vol. 4, pp. 3839–3844 (2010).CrossRef
67.
Zurück zum Zitat Y. Shi, et al., “Work Function Engineering of Graphene Electrode via Chemical Doping,” ACS Nano vol. 4, pp. 2689–2694 (2010).CrossRef Y. Shi, et al., “Work Function Engineering of Graphene Electrode via Chemical Doping,” ACS Nano vol. 4, pp. 2689–2694 (2010).CrossRef
68.
Zurück zum Zitat F. Gunes, et al., “Layer-by-Layer Doping of Few-Layer Graphene Film,” ACS Nano vol. 4, pp. 4595–4600 (2010).CrossRef F. Gunes, et al., “Layer-by-Layer Doping of Few-Layer Graphene Film,” ACS Nano vol. 4, pp. 4595–4600 (2010).CrossRef
69.
Zurück zum Zitat C. Coletti, et al., “Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping,” Physical Review B vol. 81, 235401 (2010).CrossRef C. Coletti, et al., “Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping,” Physical Review B vol. 81, 235401 (2010).CrossRef
70.
Zurück zum Zitat W. Chen, et al., “Surface Transfer p-Type Doping of Epitaxial Graphene,” Journal of the American Chemical Society vol. 129, pp. 10418–10422 (2007).CrossRef W. Chen, et al., “Surface Transfer p-Type Doping of Epitaxial Graphene,” Journal of the American Chemical Society vol. 129, pp. 10418–10422 (2007).CrossRef
71.
Zurück zum Zitat I. Gierz, et al., “Atomic Hole Doping of Graphene,” Nano Letters vol. 8, pp. 4603–4607 (2008).CrossRef I. Gierz, et al., “Atomic Hole Doping of Graphene,” Nano Letters vol. 8, pp. 4603–4607 (2008).CrossRef
72.
Zurück zum Zitat X. R. Wang, et al., “N-Doping of Graphene Through Electrothermal Reactions with Ammonia,” Science vol. 324, pp. 768–771 (2009).CrossRef X. R. Wang, et al., “N-Doping of Graphene Through Electrothermal Reactions with Ammonia,” Science vol. 324, pp. 768–771 (2009).CrossRef
73.
Zurück zum Zitat S. Ryu, et al., “Reversible Basal Plane Hydrogenation of Graphene,” Nano Letters vol. 8, pp. 4597–4602 (2008).CrossRef S. Ryu, et al., “Reversible Basal Plane Hydrogenation of Graphene,” Nano Letters vol. 8, pp. 4597–4602 (2008).CrossRef
74.
Zurück zum Zitat M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx : H thin films deposited from hydrogen silsesquioxane resins,” Journal of the Electrochemical Society vol. 145, pp. 2861–2866 (1998).CrossRef M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx : H thin films deposited from hydrogen silsesquioxane resins,” Journal of the Electrochemical Society vol. 145, pp. 2861–2866 (1998).CrossRef
75.
Zurück zum Zitat K. Brenner and R. Murali, “Single step, complementary doping of graphene,” Applied Physics Letters vol. 96, 063104 (2010).CrossRef K. Brenner and R. Murali, “Single step, complementary doping of graphene,” Applied Physics Letters vol. 96, 063104 (2010).CrossRef
76.
Zurück zum Zitat H. J. Lee, et al., “Structural comparison of hydrogen silsesquioxane based porous low-k thin films prepared with varying process conditions,” Chemistry of Materials vol. 14, pp. 1845–1852 (2002).CrossRef H. J. Lee, et al., “Structural comparison of hydrogen silsesquioxane based porous low-k thin films prepared with varying process conditions,” Chemistry of Materials vol. 14, pp. 1845–1852 (2002).CrossRef
77.
Zurück zum Zitat M. Cheli, P. Michetti, and G. Iannaccone, “Model and Performance Evaluation of Field-Effect Transistors Based on Epitaxial Graphene on SiC,” IEEE Transactions on Electron Devices vol. 57, pp. 1936–1941 (2010).CrossRef M. Cheli, P. Michetti, and G. Iannaccone, “Model and Performance Evaluation of Field-Effect Transistors Based on Epitaxial Graphene on SiC,” IEEE Transactions on Electron Devices vol. 57, pp. 1936–1941 (2010).CrossRef
78.
Zurück zum Zitat H. Wang, et al., “Compact Virtual-Source Current–voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors,” IEEE Transactions on Electron Devices vol. 58, pp. 1523–1533 (2011).CrossRef H. Wang, et al., “Compact Virtual-Source Current–voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors,” IEEE Transactions on Electron Devices vol. 58, pp. 1523–1533 (2011).CrossRef
79.
Zurück zum Zitat Y. Ouyang, Y. Yoon, and J. Guo, “Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study,” IEEE Transactions on Electron Devices vol. 54, pp. 2223–2231 (2007).CrossRef Y. Ouyang, Y. Yoon, and J. Guo, “Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study,” IEEE Transactions on Electron Devices vol. 54, pp. 2223–2231 (2007).CrossRef
80.
Zurück zum Zitat K. Nagashio and A. Toriumi, “DOS-limited contact resistance in graphene FETs,” arxiv 1104.1818 (2011). K. Nagashio and A. Toriumi, “DOS-limited contact resistance in graphene FETs,” arxiv 1104.1818 (2011).
81.
Zurück zum Zitat B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, “Evidence of the role of contacts on the observed electron–hole asymmetry in graphene,” Physical Review B vol. 78, 121402 (2008).CrossRef B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, “Evidence of the role of contacts on the observed electron–hole asymmetry in graphene,” Physical Review B vol. 78, 121402 (2008).CrossRef
82.
Zurück zum Zitat S. Russo, et al., “Contact resistance in graphene-based devices,” Physica E: Low-dimensional Systems and Nanostructures vol. 42, pp. 677–679 (2010).CrossRef S. Russo, et al., “Contact resistance in graphene-based devices,” Physica E: Low-dimensional Systems and Nanostructures vol. 42, pp. 677–679 (2010).CrossRef
83.
Zurück zum Zitat A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Applied Physics Letters vol. 96, pp. 013512–3 (2010).CrossRef A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Applied Physics Letters vol. 96, pp. 013512–3 (2010).CrossRef
84.
Zurück zum Zitat K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, “Contact resistivity and current flow path at metal/graphene contact,” Applied Physics Letters vol. 97, pp. - (2010). K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, “Contact resistivity and current flow path at metal/graphene contact,” Applied Physics Letters vol. 97, pp. - (2010).
85.
Zurück zum Zitat P. Blake, et al., “Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point,” Solid State Communications vol. 149, pp. 1068–1071 (2009).CrossRef P. Blake, et al., “Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point,” Solid State Communications vol. 149, pp. 1068–1071 (2009).CrossRef
86.
Zurück zum Zitat K. L. Grosse, et al., “Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts,” Nature Nanotechnology vol. 6, pp. 287–290 (2011).CrossRef K. L. Grosse, et al., “Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts,” Nature Nanotechnology vol. 6, pp. 287–290 (2011).CrossRef
87.
Zurück zum Zitat J. A. Robinson, et al., “Contacting graphene,” Applied Physics Letters vol. 98, pp. 053103–3 (2011).CrossRef J. A. Robinson, et al., “Contacting graphene,” Applied Physics Letters vol. 98, pp. 053103–3 (2011).CrossRef
88.
Zurück zum Zitat F. Xia, et al., “The origins and limits of metal-graphene junction resistance,” Nature Nanotechnology vol. 6, pp. 179–184 (2011).CrossRef F. Xia, et al., “The origins and limits of metal-graphene junction resistance,” Nature Nanotechnology vol. 6, pp. 179–184 (2011).CrossRef
89.
Zurück zum Zitat E. J. H. Lee, et al., “Contact and edge effects in graphene devices,” Nature Nanotechnology vol. 3, pp. 486–490 (2008).CrossRef E. J. H. Lee, et al., “Contact and edge effects in graphene devices,” Nature Nanotechnology vol. 3, pp. 486–490 (2008).CrossRef
90.
Zurück zum Zitat F. N. Xia, et al., “Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor,” Nano Letters vol. 9, pp. 1039–1044 (2009).CrossRef F. N. Xia, et al., “Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor,” Nano Letters vol. 9, pp. 1039–1044 (2009).CrossRef
91.
Zurück zum Zitat H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene Frequency Multipliers,” IEEE Electron Device Letters vol. 30, pp. 547–549 (2009).CrossRef H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene Frequency Multipliers,” IEEE Electron Device Letters vol. 30, pp. 547–549 (2009).CrossRef
92.
Zurück zum Zitat F. Traversi, V. Russo, and R. Sordan, “Integrated complementary graphene inverter,” Applied Physics Letters vol. 94, 223312 (2009).CrossRef F. Traversi, V. Russo, and R. Sordan, “Integrated complementary graphene inverter,” Applied Physics Letters vol. 94, 223312 (2009).CrossRef
93.
Zurück zum Zitat S. L. Li, et al., “Low Operating Bias and Matched Input–output Characteristics in Graphene Logic Inverters,” Nano Letters vol. 10, pp. 2357–2362 (2010).CrossRef S. L. Li, et al., “Low Operating Bias and Matched Input–output Characteristics in Graphene Logic Inverters,” Nano Letters vol. 10, pp. 2357–2362 (2010).CrossRef
94.
Zurück zum Zitat S. L. Li, et al., “Enhanced Logic Performance with Semiconducting Bilayer Graphene Channels,” ACS Nano vol. 5, pp. 500–506 (2011).CrossRef S. L. Li, et al., “Enhanced Logic Performance with Semiconducting Bilayer Graphene Channels,” ACS Nano vol. 5, pp. 500–506 (2011).CrossRef
95.
Zurück zum Zitat H. Wang, et al., “Graphene-Based Ambipolar RF Mixers,” IEEE Electron Device Letters vol. 31, pp. 906–908 (2010).MATHCrossRef H. Wang, et al., “Graphene-Based Ambipolar RF Mixers,” IEEE Electron Device Letters vol. 31, pp. 906–908 (2010).MATHCrossRef
96.
Zurück zum Zitat Y. M. Lin, et al., “Wafer-Scale Graphene Integrated Circuit,” Science vol. 332, pp. 1294–1297 (2011).CrossRef Y. M. Lin, et al., “Wafer-Scale Graphene Integrated Circuit,” Science vol. 332, pp. 1294–1297 (2011).CrossRef
97.
Zurück zum Zitat M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nature Physics vol. 2, pp. 620–625 (2006).CrossRef M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nature Physics vol. 2, pp. 620–625 (2006).CrossRef
98.
Zurück zum Zitat V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, “The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions,” Science vol. 315, pp. 1252–1255 (2007).CrossRef V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, “The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions,” Science vol. 315, pp. 1252–1255 (2007).CrossRef
99.
Zurück zum Zitat S. Tanachutiwat, J. U. Lee, W. Wang, and C. Y. Sung, “Reconfigurable multi-function logic based on graphene P-N junctions,” presented at the Proceedings of the 47th Design Automation Conference, Anaheim, California, 2010. S. Tanachutiwat, J. U. Lee, W. Wang, and C. Y. Sung, “Reconfigurable multi-function logic based on graphene P-N junctions,” presented at the Proceedings of the 47th Design Automation Conference, Anaheim, California, 2010.
100.
Zurück zum Zitat A. C. Seabaugh and Q. Zhang, “Low-Voltage Tunnel Transistors for Beyond CMOS Logic,” Proceedings of the IEEE vol. 98, pp. 2095–2110 (2010).CrossRef A. C. Seabaugh and Q. Zhang, “Low-Voltage Tunnel Transistors for Beyond CMOS Logic,” Proceedings of the IEEE vol. 98, pp. 2095–2110 (2010).CrossRef
Metadaten
Titel
Graphene Transistors
verfasst von
Raghu Murali
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-0548-1_3