Skip to main content

2012 | OriginalPaper | Buchkapitel

4. Alternative State Variables for Graphene Transistors

verfasst von : Kosmas Galatsis, Alexander Shailos, Ajey P. Jacob, Kang L. Wang

Erschienen in: Graphene Nanoelectronics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an outlook of some important state variables used to enable graphene based nanoelectronic devices. State variables are physical representations of information used to perform information processing via memory, logic and transmission functionality. Recent advances in scalable graphene and controllable nanoribbons has provided hope for graphene based nanodevices, including more exotic devices that employ alternative state variables. This chapter will discuss a few such devices including electron charge as used in FET devices, electron spin as used in Spin FET devices, pseudospin as used in BiSFET devices, phonons as used in thermal logic and molecular charge as used in atomic mechanical switches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science vol. 306, p. 666, 2004.CrossRef K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science vol. 306, p. 666, 2004.CrossRef
2.
Zurück zum Zitat K. Galatsis, A. Khitun, R. Ostroumov, K. Wang, W. Dichtel, E. Plummer, J. Stoddart, J. Zink, J. Lee, and Y. Xie, “Alternate State Variables for Emerging Nanoelectronic Devices,” Nanotechnology, IEEE Transactions on vol. 8, pp. 66–75, 2009.CrossRef K. Galatsis, A. Khitun, R. Ostroumov, K. Wang, W. Dichtel, E. Plummer, J. Stoddart, J. Zink, J. Lee, and Y. Xie, “Alternate State Variables for Emerging Nanoelectronic Devices,” Nanotechnology, IEEE Transactions on vol. 8, pp. 66–75, 2009.CrossRef
3.
Zurück zum Zitat J. D. Meindl, “Low power microelectronics: retrospect and prospect,” Proceedings of the IEEE vol. 83, pp. 619–635, 1995.CrossRef J. D. Meindl, “Low power microelectronics: retrospect and prospect,” Proceedings of the IEEE vol. 83, pp. 619–635, 1995.CrossRef
4.
Zurück zum Zitat Y. Taur, “CMOS design near the limit of scaling,” IBM Journal of Research and Development vol. 46, pp. 213–222, 2002.CrossRef Y. Taur, “CMOS design near the limit of scaling,” IBM Journal of Research and Development vol. 46, pp. 213–222, 2002.CrossRef
5.
Zurück zum Zitat J. Hutchby, G. Bourianoff, V. Zhirnov, and J. Brewer, “Extending the road beyond CMOS,” Circuits and Devices Magazine, IEEE vol. 18, pp. 28–41, 2002.CrossRef J. Hutchby, G. Bourianoff, V. Zhirnov, and J. Brewer, “Extending the road beyond CMOS,” Circuits and Devices Magazine, IEEE vol. 18, pp. 28–41, 2002.CrossRef
6.
Zurück zum Zitat J. Meyer, A. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature vol. 446, pp. 60–63, 2007.CrossRef J. Meyer, A. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature vol. 446, pp. 60–63, 2007.CrossRef
7.
Zurück zum Zitat M. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Physical review letters vol. 98, p. 206805, 2007.CrossRef M. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Physical review letters vol. 98, p. 206805, 2007.CrossRef
8.
Zurück zum Zitat X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Physical review letters vol. 100, p. 206803, 2008.CrossRef X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Physical review letters vol. 100, p. 206803, 2008.CrossRef
9.
Zurück zum Zitat L. Mao, “Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors,” Nanotechnology vol. 20, p. 275203, 2009.CrossRef L. Mao, “Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors,” Nanotechnology vol. 20, p. 275203, 2009.CrossRef
10.
Zurück zum Zitat S. Russo, M. Craciun, M. Yamamoto, A. Morpurgo, and S. Tarucha, “Contact resistance in graphene-based devices,” Physica E: Low-dimensional Systems and Nanostructures 2009. S. Russo, M. Craciun, M. Yamamoto, A. Morpurgo, and S. Tarucha, “Contact resistance in graphene-based devices,” Physica E: Low-dimensional Systems and Nanostructures 2009.
11.
Zurück zum Zitat L. Liao, Y. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. Wang, Y. Huang, and X. Duan, “High-speed graphene transistors with a self-aligned nanowire gate,” Nature vol. 467, pp. 305–308, 2010.CrossRef L. Liao, Y. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. Wang, Y. Huang, and X. Duan, “High-speed graphene transistors with a self-aligned nanowire gate,” Nature vol. 467, pp. 305–308, 2010.CrossRef
12.
Zurück zum Zitat R. W. Keyes and R. Landauer, “Minimal energy dissipation in logic,” IBM Journal of Research & Development vol. 14, pp. 152–7, 1970.CrossRef R. W. Keyes and R. Landauer, “Minimal energy dissipation in logic,” IBM Journal of Research & Development vol. 14, pp. 152–7, 1970.CrossRef
13.
Zurück zum Zitat R. Landauer, “Irreversibility and heat generation in the computing process,” IBM Journal of Research & Development vol. 5, p. 183, 1961.MathSciNetMATHCrossRef R. Landauer, “Irreversibility and heat generation in the computing process,” IBM Journal of Research & Development vol. 5, p. 183, 1961.MathSciNetMATHCrossRef
14.
Zurück zum Zitat R. Landauer, “Computation: a fundamental physical view,” Physica Scripta vol. 35, pp. 88–95, 1987.CrossRef R. Landauer, “Computation: a fundamental physical view,” Physica Scripta vol. 35, pp. 88–95, 1987.CrossRef
15.
Zurück zum Zitat C.Shannon, “The mathematical theory of communication,” Bell Systems Technical Journal vol. 27, pp. 379–423, Mar 1948 1948.MathSciNetMATH C.Shannon, “The mathematical theory of communication,” Bell Systems Technical Journal vol. 27, pp. 379–423, Mar 1948 1948.MathSciNetMATH
16.
Zurück zum Zitat J. D. Meindl, “A history of low power electronics: how it began and where it’s headed,” in Proceedings 1997 International Symposium on Low Power Electronics and Design (IEEE Cat. No.97TH8332). ACM. 1997, pp. 149–51. New York, NY, USA. J. D. Meindl, “A history of low power electronics: how it began and where it’s headed,” in Proceedings 1997 International Symposium on Low Power Electronics and Design (IEEE Cat. No.97TH8332). ACM. 1997, pp. 149–51. New York, NY, USA.
17.
Zurück zum Zitat J. D. Meindl and J. A. Davis, “The fundamental limit on binary switching energy for terascale integration (TSI),” IEEE Journal of Solid-State Circuits vol. 35, pp. 1515–16, 2000.CrossRef J. D. Meindl and J. A. Davis, “The fundamental limit on binary switching energy for terascale integration (TSI),” IEEE Journal of Solid-State Circuits vol. 35, pp. 1515–16, 2000.CrossRef
18.
Zurück zum Zitat V. V. Zhirnov, R. K. Cavin, III, J. A. Hutchby, and G. I. Bourianoff, “Limits to binary logic switch scaling - a gedanken model,” Proceedings of the IEEE vol. 91, pp. 1934–9, 2003.CrossRef V. V. Zhirnov, R. K. Cavin, III, J. A. Hutchby, and G. I. Bourianoff, “Limits to binary logic switch scaling - a gedanken model,” Proceedings of the IEEE vol. 91, pp. 1934–9, 2003.CrossRef
19.
Zurück zum Zitat R. W. Keyes, “Fundamental limits in digital information processing,” Proceedings of the IEEE vol. 69, pp. 267–78, 1981.CrossRef R. W. Keyes, “Fundamental limits in digital information processing,” Proceedings of the IEEE vol. 69, pp. 267–78, 1981.CrossRef
20.
Zurück zum Zitat K. L. Wang, K. Galatsis, R. Ostroumov, M. Ozkan, K. Likharev, and Y. Botros, “Nanoarchitectonics: Advances in Nanoelectronics,” in Handbook of Nanoscience, Engineering and Technology, 2nd ed, W. A. Goddard, III, W. D. Brenner, S. E. Lyshevski, and J. G. Iafrate, Eds. Boca Raton: CRC Press, 2007. K. L. Wang, K. Galatsis, R. Ostroumov, M. Ozkan, K. Likharev, and Y. Botros, “Nanoarchitectonics: Advances in Nanoelectronics,” in Handbook of Nanoscience, Engineering and Technology, 2nd ed, W. A. Goddard, III, W. D. Brenner, S. E. Lyshevski, and J. G. Iafrate, Eds. Boca Raton: CRC Press, 2007.
21.
Zurück zum Zitat R. Ostroumov and K. L. Wang, “On Power Dissipation in Information Processing,” in American Physical Society, Los Angeles, 2005. R. Ostroumov and K. L. Wang, “On Power Dissipation in Information Processing,” in American Physical Society, Los Angeles, 2005.
22.
Zurück zum Zitat R. Ostroumov and K. L. Wang, “Fundamental power dissipation in scaled CMOS and beyond,” in Proceedings of the SRC Techcon Conference, Portland, 2005. R. Ostroumov and K. L. Wang, “Fundamental power dissipation in scaled CMOS and beyond,” in Proceedings of the SRC Techcon Conference, Portland, 2005.
24.
Zurück zum Zitat K. Majumdar, K. V. R. M. Murali, N. Bhat, and Y.-M. Lin, “External Bias Dependent Direct To Indirect Band Gap Transition in Graphene Nanoribbon,” Nano Letters vol. 10, pp. 2857–2862, 2010.CrossRef K. Majumdar, K. V. R. M. Murali, N. Bhat, and Y.-M. Lin, “External Bias Dependent Direct To Indirect Band Gap Transition in Graphene Nanoribbon,” Nano Letters vol. 10, pp. 2857–2862, 2010.CrossRef
25.
Zurück zum Zitat R. Singh, J. O. Poole, K. F. Poole, and S. D. Vaidya, “Fundamental device design considerations in the development of disruptive nanoelectronics,” Journal of Nanoscience and Nanotechnology vol. 2, pp. 363–8, 2002.CrossRef R. Singh, J. O. Poole, K. F. Poole, and S. D. Vaidya, “Fundamental device design considerations in the development of disruptive nanoelectronics,” Journal of Nanoscience and Nanotechnology vol. 2, pp. 363–8, 2002.CrossRef
26.
Zurück zum Zitat J. R. Heath, “Molecular Electronics,” Annual Review of Materials Research vol. 39, pp. 1–23, 2009.CrossRef J. R. Heath, “Molecular Electronics,” Annual Review of Materials Research vol. 39, pp. 1–23, 2009.CrossRef
27.
Zurück zum Zitat M. Butts, A. DeHon, and S. C. Goldstein, “Molecular electronics: devices, systems and tools for gigagate, gigabit chips,” in IEEE/ACM International Conference on Computer Aided Design. IEEE/ACM Digest of Technical Papers (Cat. No.02CH37391). IEEE. 2002, pp. 433–40. Piscataway, NJ, USA. M. Butts, A. DeHon, and S. C. Goldstein, “Molecular electronics: devices, systems and tools for gigagate, gigabit chips,” in IEEE/ACM International Conference on Computer Aided Design. IEEE/ACM Digest of Technical Papers (Cat. No.02CH37391). IEEE. 2002, pp. 433–40. Piscataway, NJ, USA.
28.
Zurück zum Zitat K. K. Likharev and D. B. Strukov, “CMOL: devices, circuits, and architectures,” Introducing Molecular Electronics. Springer-Verlag. 2005 pp. 447–77. K. K. Likharev and D. B. Strukov, “CMOL: devices, circuits, and architectures,” Introducing Molecular Electronics. Springer-Verlag. 2005 pp. 447–77.
29.
Zurück zum Zitat J. E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. Shik Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath, “A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre,” Nature vol. 445, pp. 414–417, 2007/01/25/print 2007. J. E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. Shik Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath, “A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre,” Nature vol. 445, pp. 414–417, 2007/01/25/print 2007.
30.
Zurück zum Zitat D. Eigler, C. Lutz, and W. Rudge, “An atomic switch realized with the scanning tunnelling microscope,” 1991. D. Eigler, C. Lutz, and W. Rudge, “An atomic switch realized with the scanning tunnelling microscope,” 1991.
31.
Zurück zum Zitat W. Dichtel, J. Heath, and J. Fraser Stoddart, “Designing bistable [2] rotaxanes for molecular electronic devices,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 365, p. 1607, 2007.CrossRef W. Dichtel, J. Heath, and J. Fraser Stoddart, “Designing bistable [2] rotaxanes for molecular electronic devices,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 365, p. 1607, 2007.CrossRef
32.
Zurück zum Zitat S. Kabehie, A. Stieg, M. Xue, M. Liong, K. Wang, and J. Zink, “Surface Immobilized Heteroleptic Copper Compounds as State Variables that Show Negative Differential Resistance,” The Journal of Physical Chemistry Letters vol. 1, pp. 589–593, 2010.CrossRef S. Kabehie, A. Stieg, M. Xue, M. Liong, K. Wang, and J. Zink, “Surface Immobilized Heteroleptic Copper Compounds as State Variables that Show Negative Differential Resistance,” The Journal of Physical Chemistry Letters vol. 1, pp. 589–593, 2010.CrossRef
33.
Zurück zum Zitat T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing,” Science vol. 289, pp. 94–97, July 7, 2000 2000.CrossRef T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing,” Science vol. 289, pp. 94–97, July 7, 2000 2000.CrossRef
34.
Zurück zum Zitat K. Milaninia, M. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Applied Physics Letters vol. 95, p. 183105, 2009.CrossRef K. Milaninia, M. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Applied Physics Letters vol. 95, p. 183105, 2009.CrossRef
35.
Zurück zum Zitat B. Standley, W. Bao, H. Zhang, J. Bruck, C. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Nano Lett vol. 8, pp. 3345–3349, 2008.CrossRef B. Standley, W. Bao, H. Zhang, J. Bruck, C. Lau, and M. Bockrath, “Graphene-based atomic-scale switches,” Nano Lett vol. 8, pp. 3345–3349, 2008.CrossRef
36.
Zurück zum Zitat M. Bockrath, J. Bruck, and N.-C. Yeh, “Graphene Atomic Switches for Ultra-Compact Logic Devices & Non-Volatile Memories,” in NRI Annual Review Gaithersburg, 2009. M. Bockrath, J. Bruck, and N.-C. Yeh, “Graphene Atomic Switches for Ultra-Compact Logic Devices & Non-Volatile Memories,” in NRI Annual Review Gaithersburg, 2009.
37.
Zurück zum Zitat C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, “Deriving carbon atomic chains from graphene,” Physical review letters vol. 102, p. 205501, 2009.CrossRef C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, “Deriving carbon atomic chains from graphene,” Physical review letters vol. 102, p. 205501, 2009.CrossRef
38.
Zurück zum Zitat A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, “Raman spectrum of graphene and graphene layers,” Physical review letters vol. 97, p. 187401, 2006.CrossRef A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, “Raman spectrum of graphene and graphene layers,” Physical review letters vol. 97, p. 187401, 2006.CrossRef
39.
Zurück zum Zitat J. Beebe and J. Kushmerick, “Nanoscale switch elements from self-assembled monolayers on silver,” Applied Physics Letters vol. 90, p. 083117, 2007.CrossRef J. Beebe and J. Kushmerick, “Nanoscale switch elements from self-assembled monolayers on silver,” Applied Physics Letters vol. 90, p. 083117, 2007.CrossRef
40.
Zurück zum Zitat T. Tamura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto, H. Sunamura, H. Kawaura, S. Hosaka, and M. Aono, “Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide,” 2007, p. 1157. T. Tamura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto, H. Sunamura, H. Kawaura, S. Hosaka, and M. Aono, “Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide,” 2007, p. 1157.
41.
Zurück zum Zitat K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature vol. 433, pp. 47–50, 2005.CrossRef K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature vol. 433, pp. 47–50, 2005.CrossRef
42.
Zurück zum Zitat I. Ovchinnikov and K. Wang, “Variability of electronics and spintronics nanoscale devices,” Applied Physics Letters vol. 92, p. 093503, 2008.CrossRef I. Ovchinnikov and K. Wang, “Variability of electronics and spintronics nanoscale devices,” Applied Physics Letters vol. 92, p. 093503, 2008.CrossRef
43.
Zurück zum Zitat N. Tombros, C. Jozsa, M. Popinciuc, H. Jonkman, and B. Van Wees, “Electronic spin transport and spin precession in single graphene layers at room temperature,” Nature vol. 448, pp. 571–574, 2007.CrossRef N. Tombros, C. Jozsa, M. Popinciuc, H. Jonkman, and B. Van Wees, “Electronic spin transport and spin precession in single graphene layers at room temperature,” Nature vol. 448, pp. 571–574, 2007.CrossRef
44.
Zurück zum Zitat W. Han, K. Pi, W. Bao, K. McCreary, Y. Li, W. Wang, C. Lau, and R. Kawakami, “Electrical detection of spin precession in single layer graphene spin valves with transparent contacts,” Applied Physics Letters vol. 94, p. 222109, 2009.CrossRef W. Han, K. Pi, W. Bao, K. McCreary, Y. Li, W. Wang, C. Lau, and R. Kawakami, “Electrical detection of spin precession in single layer graphene spin valves with transparent contacts,” Applied Physics Letters vol. 94, p. 222109, 2009.CrossRef
45.
Zurück zum Zitat S. Sugahara and M. Tanaka, “Spin MOSFETs as a basis for spintronics,” ACM Transactions on Storage (TOS) vol. 2, pp. 197–219, 2006.CrossRef S. Sugahara and M. Tanaka, “Spin MOSFETs as a basis for spintronics,” ACM Transactions on Storage (TOS) vol. 2, pp. 197–219, 2006.CrossRef
46.
Zurück zum Zitat S. Datta and B. Das, “Electronic analog of the electro optic modulator,” Applied Physics Letters vol. 56, pp. 665–667, 2009.CrossRef S. Datta and B. Das, “Electronic analog of the electro optic modulator,” Applied Physics Letters vol. 56, pp. 665–667, 2009.CrossRef
47.
Zurück zum Zitat T. Jayasekera, B. D. Kong, K. W. Kim, and M. Buongiorno Nardelli, “Band Engineering and Magnetic Doping of Epitaxial Graphene on SiC (0001),” Physical review letters vol. 104, p. 146801, 2010.CrossRef T. Jayasekera, B. D. Kong, K. W. Kim, and M. Buongiorno Nardelli, “Band Engineering and Magnetic Doping of Epitaxial Graphene on SiC (0001),” Physical review letters vol. 104, p. 146801, 2010.CrossRef
48.
Zurück zum Zitat Y. Semenov, K. Kim, and J. Zavada, “Spin field effect transistor with a graphene channel,” Applied Physics Letters vol. 91, p. 153105, 2007.CrossRef Y. Semenov, K. Kim, and J. Zavada, “Spin field effect transistor with a graphene channel,” Applied Physics Letters vol. 91, p. 153105, 2007.CrossRef
49.
Zurück zum Zitat V. Karpan, G. Giovannetti, P. Khomyakov, M. Talanana, A. Starikov, M. Zwierzycki, J. van den Brink, G. Brocks, and P. Kelly, “Graphite and graphene as perfect spin filters,” Physical review letters vol. 99, p. 176602, 2007.CrossRef V. Karpan, G. Giovannetti, P. Khomyakov, M. Talanana, A. Starikov, M. Zwierzycki, J. van den Brink, G. Brocks, and P. Kelly, “Graphite and graphene as perfect spin filters,” Physical review letters vol. 99, p. 176602, 2007.CrossRef
50.
Zurück zum Zitat C. Tahan and R. Joynt, “Rashba spin-orbit coupling and spin relaxation in silicon quantum wells,” Physical Review B vol. 71, Feb 2005. C. Tahan and R. Joynt, “Rashba spin-orbit coupling and spin relaxation in silicon quantum wells,” Physical Review B vol. 71, Feb 2005.
51.
Zurück zum Zitat J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, “Graphene nanomesh,” Nat Nano vol. 5, pp. 190–194, 2010.CrossRef J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, “Graphene nanomesh,” Nat Nano vol. 5, pp. 190–194, 2010.CrossRef
52.
Zurück zum Zitat M. Polini, R. Asgari, Y. Barlas, T. Pereg-Barnea, and A. MacDonald, “Graphene: A pseudochiral Fermi liquid,” Solid State Communications vol. 143, pp. 58–62, 2007.CrossRef M. Polini, R. Asgari, Y. Barlas, T. Pereg-Barnea, and A. MacDonald, “Graphene: A pseudochiral Fermi liquid,” Solid State Communications vol. 143, pp. 58–62, 2007.CrossRef
53.
Zurück zum Zitat S. Banerjee, L. Register, E. Tutuc, D. Reddy, and A. MacDonald, “Bilayer pseudospin field-effect transistor (BiSFET): a proposed new logic device,” Electron Device Letters, IEEE vol. 30, pp. 158–160, 2009.CrossRef S. Banerjee, L. Register, E. Tutuc, D. Reddy, and A. MacDonald, “Bilayer pseudospin field-effect transistor (BiSFET): a proposed new logic device,” Electron Device Letters, IEEE vol. 30, pp. 158–160, 2009.CrossRef
54.
Zurück zum Zitat I. Spielman, J. Eisenstein, L. Pfeiffer, and K. West, “Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet,” Physical review letters vol. 84, pp. 5808–5811, 2000.CrossRef I. Spielman, J. Eisenstein, L. Pfeiffer, and K. West, “Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet,” Physical review letters vol. 84, pp. 5808–5811, 2000.CrossRef
55.
Zurück zum Zitat H. Min, R. Bistritzer, J. Su, and A. MacDonald, “Room-temperature superfluidity in graphene bilayers,” Physical Review B vol. 78, p. 121401, 2008.CrossRef H. Min, R. Bistritzer, J. Su, and A. MacDonald, “Room-temperature superfluidity in graphene bilayers,” Physical Review B vol. 78, p. 121401, 2008.CrossRef
56.
Zurück zum Zitat H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald, “Room-temperature superfluidity in graphene bilayers,” Physical Review B vol. 78, p. 121401, 2008.CrossRef H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald, “Room-temperature superfluidity in graphene bilayers,” Physical Review B vol. 78, p. 121401, 2008.CrossRef
57.
Zurück zum Zitat D. Reddy, L. Register, E. Tutuc, and S. Banerjee, “Bilayer Pseudospin Field-Effect Transistor: Applications to Boolean Logic,” Electron Devices, IEEE Transactions on vol. 57, pp. 755–764, 2010.CrossRef D. Reddy, L. Register, E. Tutuc, and S. Banerjee, “Bilayer Pseudospin Field-Effect Transistor: Applications to Boolean Logic,” Electron Devices, IEEE Transactions on vol. 57, pp. 755–764, 2010.CrossRef
58.
Zurück zum Zitat S. Ianeselli, C. Menotti, and A. Smerzi, “Beyond the Landau criterion for superfluidity,” Journal of Physics B: Atomic, Molecular and Optical Physics vol. 39, p. S135, 2006.CrossRef S. Ianeselli, C. Menotti, and A. Smerzi, “Beyond the Landau criterion for superfluidity,” Journal of Physics B: Atomic, Molecular and Optical Physics vol. 39, p. S135, 2006.CrossRef
59.
Zurück zum Zitat F. Rana, “Electron–hole generation and recombination rates for Coulomb scattering in graphene,” Physical Review B vol. 76, p. 155431, 2007.CrossRef F. Rana, “Electron–hole generation and recombination rates for Coulomb scattering in graphene,” Physical Review B vol. 76, p. 155431, 2007.CrossRef
60.
Zurück zum Zitat M. Gilbert, “Performance Characteristics of Scaled Bilayer Graphene Pseudospin Devices,” Electron Devices, IEEE Transactions on pp. 1–9. M. Gilbert, “Performance Characteristics of Scaled Bilayer Graphene Pseudospin Devices,” Electron Devices, IEEE Transactions on pp. 1–9.
61.
Zurück zum Zitat A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters vol. 8, pp. 902–907, 2008.CrossRef A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters vol. 8, pp. 902–907, 2008.CrossRef
62.
Zurück zum Zitat L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delkd, W. Wu, Z. Liu, X. Wang, Z. Jiang, X. Ruan, J. Bao, S. S. Pei, and Y. P. Chen, “Thermal Transport in Graphene Nanostructures: Experiments and Simulations,” ECS Transactions vol. 28, pp. 73–83, 2010.CrossRef L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delkd, W. Wu, Z. Liu, X. Wang, Z. Jiang, X. Ruan, J. Bao, S. S. Pei, and Y. P. Chen, “Thermal Transport in Graphene Nanostructures: Experiments and Simulations,” ECS Transactions vol. 28, pp. 73–83, 2010.CrossRef
63.
Zurück zum Zitat J. Hu, X. Ruan, and Y. Chen, “Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study,” Nano Letters vol. 9, pp. 2730–2735, 2009.CrossRef J. Hu, X. Ruan, and Y. Chen, “Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study,” Nano Letters vol. 9, pp. 2730–2735, 2009.CrossRef
64.
Zurück zum Zitat L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Physical review letters vol. 101, p. 267203, 2008.CrossRef L. Wang and B. Li, “Thermal memory: a storage of phononic information,” Physical review letters vol. 101, p. 267203, 2008.CrossRef
65.
Zurück zum Zitat N. Yang, G. Zhang, and B. Li, “Thermal rectification in asymmetric graphene ribbons,” Applied Physics Letters vol. 95, p. 033107, 2009.CrossRef N. Yang, G. Zhang, and B. Li, “Thermal rectification in asymmetric graphene ribbons,” Applied Physics Letters vol. 95, p. 033107, 2009.CrossRef
66.
Zurück zum Zitat L. Wang and B. Li, “Thermal logic gates: computation with phonons,” Physical review letters vol. 99, p. 177208, 2007.CrossRef L. Wang and B. Li, “Thermal logic gates: computation with phonons,” Physical review letters vol. 99, p. 177208, 2007.CrossRef
67.
Zurück zum Zitat B. Li, L. Wang, and G. Casati, “Thermal diode: Rectification of heat flux,” Physical review letters vol. 93, p. 184301, 2004.CrossRef B. Li, L. Wang, and G. Casati, “Thermal diode: Rectification of heat flux,” Physical review letters vol. 93, p. 184301, 2004.CrossRef
68.
Zurück zum Zitat G. Wu and B. Li, “Thermal rectifiers from deformed carbonánanohorns,” Journal of Physics: Condensed Matter vol. 20, p. 175211, 2008.CrossRef G. Wu and B. Li, “Thermal rectifiers from deformed carbonánanohorns,” Journal of Physics: Condensed Matter vol. 20, p. 175211, 2008.CrossRef
69.
Zurück zum Zitat N. Yang, N. Li, L. Wang, and B. Li, “Thermal rectification and negative differential thermal resistance in lattices with mass gradient,” Physical Review B vol. 76, p. 20301, 2007.CrossRef N. Yang, N. Li, L. Wang, and B. Li, “Thermal rectification and negative differential thermal resistance in lattices with mass gradient,” Physical Review B vol. 76, p. 20301, 2007.CrossRef
70.
Zurück zum Zitat D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering,” Physical Review B vol. 79, p. 155413, 2009.CrossRef D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering,” Physical Review B vol. 79, p. 155413, 2009.CrossRef
71.
Zurück zum Zitat J. I. Cirac and P. Zoller, “Quantum Computations with Cold Trapped Ions,” Physical review letters vol. 74, p. 4091, 1995.CrossRef J. I. Cirac and P. Zoller, “Quantum Computations with Cold Trapped Ions,” Physical review letters vol. 74, p. 4091, 1995.CrossRef
Metadaten
Titel
Alternative State Variables for Graphene Transistors
verfasst von
Kosmas Galatsis
Alexander Shailos
Ajey P. Jacob
Kang L. Wang
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-0548-1_4