Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

03.04.2023 | Original Research Article

Designing Trimetallic CoNiFeMOF Synthesized by Electrochemical and Solvothermal Methods and Direct Use Towards Efficient Oxygen Evolution Reaction

verfasst von: P. Sayadi, S. Zeinali, S. Momeni, S. F. NamiAna, M. Tohidi

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Designing a highly efficient and low-cost electrocatalyst for producing hydrogen and oxygen gas as renewable energy through water splitting is essential. Recently, metal–organic frameworks (MOFs) have emerged as decent catalysts with several advantages and better performance than other electrocatalysts. MOFs have been applied for oxygen evolution reaction (OER) to reduce the required energy and increase the kinetic of the reaction. Here, CoNiFeMOFs were successfully synthesized by both solvothermal and electrochemical methods. MIL-101(Fe) was selected as a primary MOF and different cobalt and nickel ratios were optimized for both bimetallic and trimetallic ones. Then, they have been employed as electrocatalysts for OER in 1.0 M KOH solution. Trimetallic MOFs exhibited noticeable electrocatalytic behavior. The over-potentials, at a constant current density of 10 mA cm−2, and Tafel slopes of S-CoNiFeMOF1 and E-CoNiFeMOF2, were equal to 300 mV, 40.9 mV dec−1 , and 320 mV, 41.2 mV dec−1 , respectively, showing the best electrocatalytic performance towards OER among other synthesized MOFs. Finally, the durability of these electrocatalysts was investigated through a chronoamperometric test in which they exhibited good stability for 12 h.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat D. Yunmei, Z. Li, Y. Liu, Y. Yang, and L. Wang, Nickel-iron phosphides nanorods derived from bimetallic-organic frameworks for hydrogen evolution reaction. Appl. Surf. Sci. 457, 1081 (2018).CrossRef D. Yunmei, Z. Li, Y. Liu, Y. Yang, and L. Wang, Nickel-iron phosphides nanorods derived from bimetallic-organic frameworks for hydrogen evolution reaction. Appl. Surf. Sci. 457, 1081 (2018).CrossRef
2.
Zurück zum Zitat S. Chunsen, S. Wu, X. Shen, X. Miao, Z. Ji, A. Yuan, K. Xu, M. Liu, X. Xiea, L. Konga, G. Zhua, and S. Shah, Metal–organic framework derived Fe/Fe3C@ N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. J. Colloid Interface Sci. 524, 93 (2018).CrossRef S. Chunsen, S. Wu, X. Shen, X. Miao, Z. Ji, A. Yuan, K. Xu, M. Liu, X. Xiea, L. Konga, G. Zhua, and S. Shah, Metal–organic framework derived Fe/Fe3C@ N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. J. Colloid Interface Sci. 524, 93 (2018).CrossRef
3.
Zurück zum Zitat X. Shili, F. Li, S. Xu, J. Li, and W. Zeng, Cobalt/iron bimetal–organic frameworks as efficient electrocatalysts for the oxygen evolution reaction. Chin. J. Catal. 40, 1205 (2019).CrossRef X. Shili, F. Li, S. Xu, J. Li, and W. Zeng, Cobalt/iron bimetal–organic frameworks as efficient electrocatalysts for the oxygen evolution reaction. Chin. J. Catal. 40, 1205 (2019).CrossRef
4.
Zurück zum Zitat Z. Chi, Y. Xie, H. Deng, C. Zhang, J. Su, Y. Dong, and J. Lin, Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 43, 7299 (2018).CrossRef Z. Chi, Y. Xie, H. Deng, C. Zhang, J. Su, Y. Dong, and J. Lin, Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 43, 7299 (2018).CrossRef
5.
Zurück zum Zitat A. Sengeni and S. Noda, Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 16, 1905779 (2020).CrossRef A. Sengeni and S. Noda, Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 16, 1905779 (2020).CrossRef
6.
Zurück zum Zitat C. Zhen, T. Zhou, W. Xi, and Y. Zhao, Bimetal metal–organic frameworks derived Co0.4Fe0.28P and Co0.37Fe0.26S nanocubes for enhanced oxygen evolution reaction. Electrochim. Acta 263, 576 (2018).CrossRef C. Zhen, T. Zhou, W. Xi, and Y. Zhao, Bimetal metal–organic frameworks derived Co0.4Fe0.28P and Co0.37Fe0.26S nanocubes for enhanced oxygen evolution reaction. Electrochim. Acta 263, 576 (2018).CrossRef
7.
Zurück zum Zitat M. Xie, Y. Ma, D. Lin, C. Xu, F. Xie, and W. Zeng, Bimetal–organic framework MIL-53 (Co–Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction. Nanoscale 12, 67 (2020).CrossRef M. Xie, Y. Ma, D. Lin, C. Xu, F. Xie, and W. Zeng, Bimetal–organic framework MIL-53 (Co–Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction. Nanoscale 12, 67 (2020).CrossRef
8.
Zurück zum Zitat Q. Yuhong, Z. Hu, X. Ge, S. Yang, Y. Peng, Z. Kang, Z. Liu, J. Lee, and D. Zhao, A metal-free ORR/OER bifunctional electrocatalyst derived from metal–organic frameworks for rechargeable Zn–Air batteries. Carbon 111, 641 (2017).CrossRef Q. Yuhong, Z. Hu, X. Ge, S. Yang, Y. Peng, Z. Kang, Z. Liu, J. Lee, and D. Zhao, A metal-free ORR/OER bifunctional electrocatalyst derived from metal–organic frameworks for rechargeable Zn–Air batteries. Carbon 111, 641 (2017).CrossRef
9.
Zurück zum Zitat A. Nguyen, M. Kim, and J. Shim, Controlled synthesis of trimetallic nitrogen-incorporated CoNiFe layered double hydroxide electrocatalysts for boosting the oxygen evolution reaction. RSC Adv. 12, 12891 (2022).CrossRef A. Nguyen, M. Kim, and J. Shim, Controlled synthesis of trimetallic nitrogen-incorporated CoNiFe layered double hydroxide electrocatalysts for boosting the oxygen evolution reaction. RSC Adv. 12, 12891 (2022).CrossRef
10.
Zurück zum Zitat H. Kelin, Q. Guo, J. Zhou, L. Qi, R. Dai, X. Xiong, Z. Zou, and K. Huang, One step synthesis of Co–Ni bimetallic organic frameworks as a highly active and durable electrocatalyst for efficient water oxidation. Colloids Surf. A 647, 129041 (2022).CrossRef H. Kelin, Q. Guo, J. Zhou, L. Qi, R. Dai, X. Xiong, Z. Zou, and K. Huang, One step synthesis of Co–Ni bimetallic organic frameworks as a highly active and durable electrocatalyst for efficient water oxidation. Colloids Surf. A 647, 129041 (2022).CrossRef
11.
Zurück zum Zitat R. Ch Venkata, K. Reddy, V. Harish, J. Shim, M.V. Shankar, N.P. Shetti, and T.M. Aminabhavi, Metal–organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int. J. Hydrogen Energy 45, 7656 (2020).CrossRef R. Ch Venkata, K. Reddy, V. Harish, J. Shim, M.V. Shankar, N.P. Shetti, and T.M. Aminabhavi, Metal–organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int. J. Hydrogen Energy 45, 7656 (2020).CrossRef
12.
Zurück zum Zitat L. Eirin, O. Swang, B. Arstad, A. Lind, J.H. Cavka, T. Lunde Jensen, T. Erik Kristensen, J. Moxnes, E. Unneberg, and R.H. Heyn, Synthesis and characterization of Al@MOF materials. Mater. Chem. Phys. 226, 220 (2019).CrossRef L. Eirin, O. Swang, B. Arstad, A. Lind, J.H. Cavka, T. Lunde Jensen, T. Erik Kristensen, J. Moxnes, E. Unneberg, and R.H. Heyn, Synthesis and characterization of Al@MOF materials. Mater. Chem. Phys. 226, 220 (2019).CrossRef
13.
Zurück zum Zitat Y. Zhou, Y. Bai, S. Zhang, Y. Liu, N. Zhang, and K. Sun, MOF-directed templating synthesis of hollow nickel-cobalt sulfide with enhanced electrocatalytic activity for oxygen evolution. Int. J. Hydrogen Energy 43, 8815 (2018).CrossRef Y. Zhou, Y. Bai, S. Zhang, Y. Liu, N. Zhang, and K. Sun, MOF-directed templating synthesis of hollow nickel-cobalt sulfide with enhanced electrocatalytic activity for oxygen evolution. Int. J. Hydrogen Energy 43, 8815 (2018).CrossRef
14.
Zurück zum Zitat H. Patricia, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle, and G. Férey, Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774 (2008).CrossRef H. Patricia, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle, and G. Férey, Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774 (2008).CrossRef
15.
Zurück zum Zitat C. Feng, R. Fu, Y. Wen, Y.Y. Yang, C. Zeng, Y. Zhang, S. Hu, and X. Wu, A new Cd based metal–organic framework for quick and convenient detection of trace water in isopropanol and 1,4-dioxane. J. Mater. Chem. C 6, 12341 (2018).CrossRef C. Feng, R. Fu, Y. Wen, Y.Y. Yang, C. Zeng, Y. Zhang, S. Hu, and X. Wu, A new Cd based metal–organic framework for quick and convenient detection of trace water in isopropanol and 1,4-dioxane. J. Mater. Chem. C 6, 12341 (2018).CrossRef
16.
Zurück zum Zitat Z. Huijie, M. Zheng, H. Tang, B. Xu, Y. Tang, and H. Pang, Amorphous intermediate derivative from ZIF-67 and its outstanding electrocatalytic activity. Small 16, 1904252 (2020).CrossRef Z. Huijie, M. Zheng, H. Tang, B. Xu, Y. Tang, and H. Pang, Amorphous intermediate derivative from ZIF-67 and its outstanding electrocatalytic activity. Small 16, 1904252 (2020).CrossRef
17.
Zurück zum Zitat L. Changqing, Y. Liu, G. Wang, L. Guan, and Y. Lin, Binding energy optimization strategy inducing enhanced catalytic performance on MIL-100 (FeNi) to catalyze water oxidation directly. ACS Sustain. Chem. Eng. 7, 7496 (2019).CrossRef L. Changqing, Y. Liu, G. Wang, L. Guan, and Y. Lin, Binding energy optimization strategy inducing enhanced catalytic performance on MIL-100 (FeNi) to catalyze water oxidation directly. ACS Sustain. Chem. Eng. 7, 7496 (2019).CrossRef
18.
Zurück zum Zitat W. Fang, X. Guo, Q. Wang, S. Lu, J. Wang, Y. Hu, G. Hao, Q. Li, M.Q. Yang, and W. Jiang, A hybrid of MIL-53(Fe) and conductive sulfide as a synergistic electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 8, 14574 (2020).CrossRef W. Fang, X. Guo, Q. Wang, S. Lu, J. Wang, Y. Hu, G. Hao, Q. Li, M.Q. Yang, and W. Jiang, A hybrid of MIL-53(Fe) and conductive sulfide as a synergistic electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 8, 14574 (2020).CrossRef
19.
Zurück zum Zitat F. Shahbazi Farahani, M.S. Rahmanifar, A. Noori, M.F. El-Kady, N. Hassani, M. Neek-Amal, R.B. Kaner, and M.F. Mousavi, Trilayer metal–organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications. J. Am. Chem. Soc. 144, 3411 (2022).CrossRef F. Shahbazi Farahani, M.S. Rahmanifar, A. Noori, M.F. El-Kady, N. Hassani, M. Neek-Amal, R.B. Kaner, and M.F. Mousavi, Trilayer metal–organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications. J. Am. Chem. Soc. 144, 3411 (2022).CrossRef
20.
Zurück zum Zitat Z. Xiaoxue, Q. Liu, X. Shi, A.M. Asiri, and X. Sun, An Fe-MOF nanosheet array with superior activity towards the alkaline oxygen evolution reaction. Inorg. Chem. Front. 5, 1405 (2018).CrossRef Z. Xiaoxue, Q. Liu, X. Shi, A.M. Asiri, and X. Sun, An Fe-MOF nanosheet array with superior activity towards the alkaline oxygen evolution reaction. Inorg. Chem. Front. 5, 1405 (2018).CrossRef
21.
Zurück zum Zitat L. Qin, L. Xie, X. Shi, G. Du, A.M. Asiri, Y. Luo, and X. Sun, High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inorg. Chem. Front. 5, 1570 (2018).CrossRef L. Qin, L. Xie, X. Shi, G. Du, A.M. Asiri, Y. Luo, and X. Sun, High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inorg. Chem. Front. 5, 1570 (2018).CrossRef
22.
Zurück zum Zitat C. Cao, J. Wang, Z. Luo, J. Wang, C. Li, and Z. Li, MOF-mediated synthesis of monodisperse Co(OH)2 flower-like nanosheets for enhanced oxygen evolution reaction. Electrochim. Acta 273, 327 (2018).CrossRef C. Cao, J. Wang, Z. Luo, J. Wang, C. Li, and Z. Li, MOF-mediated synthesis of monodisperse Co(OH)2 flower-like nanosheets for enhanced oxygen evolution reaction. Electrochim. Acta 273, 327 (2018).CrossRef
23.
Zurück zum Zitat C. Chun, L. Zhang, C.W. Hsu, X.F. Chuah, and S.Y. Lu, Mixed NiO/NiCo2O4 nanocrystals grown from the skeleton of a 3D porous nickel network as efficient electrocatalysts for oxygen evolution reactions. ACS Appl. Mater. Interfaces 10, 417 (2018).CrossRef C. Chun, L. Zhang, C.W. Hsu, X.F. Chuah, and S.Y. Lu, Mixed NiO/NiCo2O4 nanocrystals grown from the skeleton of a 3D porous nickel network as efficient electrocatalysts for oxygen evolution reactions. ACS Appl. Mater. Interfaces 10, 417 (2018).CrossRef
24.
Zurück zum Zitat R. Duraisamy Senthil, H.W. Lin, and S.Y. Lu, Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy 57, 1 (2019).CrossRef R. Duraisamy Senthil, H.W. Lin, and S.Y. Lu, Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy 57, 1 (2019).CrossRef
25.
Zurück zum Zitat O. Taiwo Oladapo, L. Shen, Y. Shi, Z. Lu, Z. Wang, H. Tan, and C. Yan, Nickel-cobalt phosphide terephthalic acid nano-heterojunction as excellent bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 421, 140484 (2022).CrossRef O. Taiwo Oladapo, L. Shen, Y. Shi, Z. Lu, Z. Wang, H. Tan, and C. Yan, Nickel-cobalt phosphide terephthalic acid nano-heterojunction as excellent bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 421, 140484 (2022).CrossRef
26.
Zurück zum Zitat D. Siyu, Y. Liu, Y. Mei, J. Hu, K. Wang, Y. Li, N. Jin, X. Wang, H. Luo, and W. Li, Iron-doped novel Co-based metal–organic frameworks for preparation of bifunctional catalysts with an amorphous structure for OER/HER in alkaline solution. Dalton Trans. 51, 15446 (2022).CrossRef D. Siyu, Y. Liu, Y. Mei, J. Hu, K. Wang, Y. Li, N. Jin, X. Wang, H. Luo, and W. Li, Iron-doped novel Co-based metal–organic frameworks for preparation of bifunctional catalysts with an amorphous structure for OER/HER in alkaline solution. Dalton Trans. 51, 15446 (2022).CrossRef
27.
Zurück zum Zitat I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, and O.A. Kholdeeva, Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101. J. Catal. 298, 61 (2013).CrossRef I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, and O.A. Kholdeeva, Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101. J. Catal. 298, 61 (2013).CrossRef
28.
Zurück zum Zitat H. Yang, L.I.U. Xian, X. Song, T. Yang, Z. Liang, and C. Fan, In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans. Nonferr. Met. Soc. China 25, 3987 (2015).CrossRef H. Yang, L.I.U. Xian, X. Song, T. Yang, Z. Liang, and C. Fan, In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans. Nonferr. Met. Soc. China 25, 3987 (2015).CrossRef
29.
Zurück zum Zitat J. Bowers, C.P. Butts, P.J. Martin, M.C. Vergara-Gutierrez, and R.K. Heenan, Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 20, 2191 (2004).CrossRef J. Bowers, C.P. Butts, P.J. Martin, M.C. Vergara-Gutierrez, and R.K. Heenan, Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 20, 2191 (2004).CrossRef
30.
Zurück zum Zitat H.T.M. Thanh, T.T.T. Phuong, P.T. Le Hang, T.T.T. Toan, T.N. Tuyen, T.X. Mau, and D.Q. Khieu, Comparative study of Pb(II) adsorption onto MIL–101 and Fe–MIL–101 from aqueous solutions. J. Environ. Chem. Eng. 6, 4093 (2018).CrossRef H.T.M. Thanh, T.T.T. Phuong, P.T. Le Hang, T.T.T. Toan, T.N. Tuyen, T.X. Mau, and D.Q. Khieu, Comparative study of Pb(II) adsorption onto MIL–101 and Fe–MIL–101 from aqueous solutions. J. Environ. Chem. Eng. 6, 4093 (2018).CrossRef
31.
Zurück zum Zitat Z. Liu, W. He, Q. Zhang, H. Shapour, and M. Fahim Bakhtari, Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega 6, 4597 (2021).CrossRef Z. Liu, W. He, Q. Zhang, H. Shapour, and M. Fahim Bakhtari, Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega 6, 4597 (2021).CrossRef
32.
Zurück zum Zitat X. Hou, Z. Han, X. Xu, D. Sarker, J. Zhou, M. Wu, Z. Liu, M. Huang, and H. Jiang, Controllable amorphization engineering on bimetallic metal–organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 418, 129330 (2021).CrossRef X. Hou, Z. Han, X. Xu, D. Sarker, J. Zhou, M. Wu, Z. Liu, M. Huang, and H. Jiang, Controllable amorphization engineering on bimetallic metal–organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 418, 129330 (2021).CrossRef
33.
Zurück zum Zitat L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, N. Zaman, and K. Talha, Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloys Compd. 850, 156583 (2021).CrossRef L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, N. Zaman, and K. Talha, Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloys Compd. 850, 156583 (2021).CrossRef
34.
Zurück zum Zitat X. Li, W. Guo, Z. Liu, R. Wang, and H. Liu, Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 369, 130 (2016).CrossRef X. Li, W. Guo, Z. Liu, R. Wang, and H. Liu, Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 369, 130 (2016).CrossRef
35.
Zurück zum Zitat H. Shu, T. Lai, J. Ren, X. Cui, X. Tian, Z. Yang, X. Xiao, and Y. Wang, Trimetallic metal–organic frameworks (Fe Co, Ni-MOF) derived as efficient electrochemical determination for ultra-micro imidacloprid in vegetables. Nanotechnology 33, 135502 (2022).CrossRef H. Shu, T. Lai, J. Ren, X. Cui, X. Tian, Z. Yang, X. Xiao, and Y. Wang, Trimetallic metal–organic frameworks (Fe Co, Ni-MOF) derived as efficient electrochemical determination for ultra-micro imidacloprid in vegetables. Nanotechnology 33, 135502 (2022).CrossRef
36.
Zurück zum Zitat J. Zhang, S. Huang, P. Ning, P. Xin, Z. Chen, Q. Wang, K. Uvdal, and Z. Hu, Nested hollow architectures of nitrogen-doped carbon-decorated Fe Co, Ni-based phosphides for boosting water and urea electrolysis. Nano Res. 15, 1916 (2022).CrossRef J. Zhang, S. Huang, P. Ning, P. Xin, Z. Chen, Q. Wang, K. Uvdal, and Z. Hu, Nested hollow architectures of nitrogen-doped carbon-decorated Fe Co, Ni-based phosphides for boosting water and urea electrolysis. Nano Res. 15, 1916 (2022).CrossRef
37.
Zurück zum Zitat Z. Li, S. Deng, H. Yu, Z. Yin, S. Qi, L. Yang, J. Lv, Z. Sun, and M. Zhang, Fe–Co–Ni trimetallic organic framework chrysanthemum-like nanoflowers: efficient and durable oxygen evolution electrocatalysts. J. Mater. Chem. A 10, 4230 (2022).CrossRef Z. Li, S. Deng, H. Yu, Z. Yin, S. Qi, L. Yang, J. Lv, Z. Sun, and M. Zhang, Fe–Co–Ni trimetallic organic framework chrysanthemum-like nanoflowers: efficient and durable oxygen evolution electrocatalysts. J. Mater. Chem. A 10, 4230 (2022).CrossRef
38.
Zurück zum Zitat L. Fan, P. Liu, X. Yan, L. Gu, Z. Yang, H. Yang, S. Qiu, and X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 1 (2016).CrossRef L. Fan, P. Liu, X. Yan, L. Gu, Z. Yang, H. Yang, S. Qiu, and X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 1 (2016).CrossRef
39.
Zurück zum Zitat H. Zhang, T. Wang, A. Sumboja, W. Zang, J. Xie, D. Gao, S. Pennycook, Z. Liu, C. Guan, and J. Wang, Integrated hierarchical carbon flake arrays with hollow P-doped CoSe2 nanoclusters as an advanced bifunctional catalyst for Zn–air batteries. Adv. Funct. Mater. 28, 1804846 (2018).CrossRef H. Zhang, T. Wang, A. Sumboja, W. Zang, J. Xie, D. Gao, S. Pennycook, Z. Liu, C. Guan, and J. Wang, Integrated hierarchical carbon flake arrays with hollow P-doped CoSe2 nanoclusters as an advanced bifunctional catalyst for Zn–air batteries. Adv. Funct. Mater. 28, 1804846 (2018).CrossRef
40.
Zurück zum Zitat J. Duan, S. Chen, and C. Zhao, Ultrathin metal–organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 1 (2017).CrossRef J. Duan, S. Chen, and C. Zhao, Ultrathin metal–organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 1 (2017).CrossRef
41.
Zurück zum Zitat J. Huang, Y. Jiang, T. An, and M. Cao, Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. J. Mater. Chem. A 8, 25465 (2020).CrossRef J. Huang, Y. Jiang, T. An, and M. Cao, Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. J. Mater. Chem. A 8, 25465 (2020).CrossRef
42.
Zurück zum Zitat J. Jing, C. Zhang, and L. Ai, Hierarchical iron nickel oxide architectures derived from metal–organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochim. Acta 208, 17 (2016).CrossRef J. Jing, C. Zhang, and L. Ai, Hierarchical iron nickel oxide architectures derived from metal–organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochim. Acta 208, 17 (2016).CrossRef
43.
Zurück zum Zitat X. Li, Z. Niu, J. Jiang, and L. Ai, Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. J. Mater. Chem. A 4, 3204 (2016).CrossRef X. Li, Z. Niu, J. Jiang, and L. Ai, Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. J. Mater. Chem. A 4, 3204 (2016).CrossRef
44.
Zurück zum Zitat Z. Zhang, Y. Qin, M. Dou, J. Ji, and F. Wang, One-step conversion from Ni/Fe polyphthalocyanine to N-doped carbon supported Ni-Fe nanoparticles for highly efficient water splitting. Nano Energy 30, 426 (2016).CrossRef Z. Zhang, Y. Qin, M. Dou, J. Ji, and F. Wang, One-step conversion from Ni/Fe polyphthalocyanine to N-doped carbon supported Ni-Fe nanoparticles for highly efficient water splitting. Nano Energy 30, 426 (2016).CrossRef
45.
Zurück zum Zitat L. Ai, T. Tian, and J. Jiang, Ultrathin graphene layers encapsulating nickel nanoparticles derived metal–organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustain. Chem. Eng. 5, 4771 (2017).CrossRef L. Ai, T. Tian, and J. Jiang, Ultrathin graphene layers encapsulating nickel nanoparticles derived metal–organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustain. Chem. Eng. 5, 4771 (2017).CrossRef
47.
Zurück zum Zitat Y. Liu, G. Chen, R. Ge, K. Pei, C. Song, W. Li, Y. Chen, Y. Zhang, L. Feng, and R. Che, Construction of CoNiFe trimetallic carbonate hydroxide hierarchical hollow microflowers with oxygen vacancies for electrocatalytic water oxidation. Adv. Funct. Mater. 32, 2200726 (2022).CrossRef Y. Liu, G. Chen, R. Ge, K. Pei, C. Song, W. Li, Y. Chen, Y. Zhang, L. Feng, and R. Che, Construction of CoNiFe trimetallic carbonate hydroxide hierarchical hollow microflowers with oxygen vacancies for electrocatalytic water oxidation. Adv. Funct. Mater. 32, 2200726 (2022).CrossRef
Metadaten
Titel
Designing Trimetallic CoNiFeMOF Synthesized by Electrochemical and Solvothermal Methods and Direct Use Towards Efficient Oxygen Evolution Reaction
verfasst von
P. Sayadi
S. Zeinali
S. Momeni
S. F. NamiAna
M. Tohidi
Publikationsdatum
03.04.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10331-y

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe

Neuer Inhalt