Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

03.04.2023 | Original Research Article

Design of High Baliga’s Figure-of-Merit P-GaN Gate AlGaN/GaN Heterostructure Field-Effect Transistors with P-AlGaN Field Plates

verfasst von: Zhiyuan Bai, Song Chai, Chenchen Zhao, Liwei Wang

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An experimentally calibrated technology computer-aided design (TCAD) simulation was conducted to study P-GaN gate AlGaN/GaN heterostructure field-effect transistors with gate-connected P-AlGaN field plates (PAFP-HFETs). The P-AlGaN field plates modulated the distribution of an electric field along the GaN channel, suppressed electric field crowding at the edge of the gate, and remarkably improved the breakdown voltage (BV). The PAFP-HFET with a gate-to-drain distance of Lgd = 6 μm, showed a BV of 1560 V with an average breakdown electric field of 2.6 MV/cm. The PAFP with structural parameters of length Lp, thickness Tp, doping density NP, and gate connected metal length Lm were optimized by the charge balance principle of the RESURF concept. The highest Baliga figure-of-merit (BFOM) of 2.4 GW/cm2 was obtained under the conditions of Tp = 500 nm, Np = 1 × 1017 cm−3, Lp = 5.8 μm and Lm = 0.8 μm. The capacitance–voltage (C–V) characteristics indicated that the PAFP-HFET had a lower Coss, Ciss and Crss than the HFET with metal field plates. Above all, the PAFP-HFET shows promise for achieving a high BFOM with conventional III-N fabrication processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.J. Chen, O. Häberlen, A. Lidow, C.I. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices 64(779), 795 (2017). K.J. Chen, O. Häberlen, A. Lidow, C.I. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices 64(779), 795 (2017).
2.
Zurück zum Zitat B.N. Pushpakaran, A.S. Subburaj, and S.B. Bayne, Commercial GaN-based power electronic systems: a review. J. Electron Mater. 49, 6247 (2020).CrossRef B.N. Pushpakaran, A.S. Subburaj, and S.B. Bayne, Commercial GaN-based power electronic systems: a review. J. Electron Mater. 49, 6247 (2020).CrossRef
3.
Zurück zum Zitat Z. Bai, J. Du, H. Wang, X. Li, and Q. Yu, Simulation design of high Baliga’s figure of merit normally-off P-GaN gate AlGaN/GaN heterostructure field effect transistors with junction field plates. Superlattice. Microstruct. 123, 257 (2018).CrossRef Z. Bai, J. Du, H. Wang, X. Li, and Q. Yu, Simulation design of high Baliga’s figure of merit normally-off P-GaN gate AlGaN/GaN heterostructure field effect transistors with junction field plates. Superlattice. Microstruct. 123, 257 (2018).CrossRef
4.
Zurück zum Zitat Z. Bai, J. Du, H. Wang, X. Li and Q. Yu, A novel junction field plates AlGaN/GaN heterostructure field effect transistors with high breakdown voltage and Baliga's figure of merit for power electronics application, in International Conference on Electronics Technology (ICET), (2018), pp. 42–45. Z. Bai, J. Du, H. Wang, X. Li and Q. Yu, A novel junction field plates AlGaN/GaN heterostructure field effect transistors with high breakdown voltage and Baliga's figure of merit for power electronics application, in International Conference on Electronics Technology (ICET), (2018), pp. 42–45.
5.
Zurück zum Zitat J. Ma, and E. Matioli, High performance Tri-gate GaN power MOSHEMTs on silicon substrate. IEEE Electron Device Lett. 38, 367 (2017).CrossRef J. Ma, and E. Matioli, High performance Tri-gate GaN power MOSHEMTs on silicon substrate. IEEE Electron Device Lett. 38, 367 (2017).CrossRef
6.
Zurück zum Zitat Y.-C. Lai, Y.-N. Zhong, M.-Y. Tsai, and Y.-M. Hsin, Gate capacitance and off-state characteristics of E-mode p-GaN gate AlGaN/GaN high-electron-mobility transistors after gate stress bias. J. Electron Mater. 50, 1162 (2021).CrossRef Y.-C. Lai, Y.-N. Zhong, M.-Y. Tsai, and Y.-M. Hsin, Gate capacitance and off-state characteristics of E-mode p-GaN gate AlGaN/GaN high-electron-mobility transistors after gate stress bias. J. Electron Mater. 50, 1162 (2021).CrossRef
7.
Zurück zum Zitat R. Sun, J. Lai, W. Chen, and B. Zhang, GaN power integration for high frequency and high efficiency power applications: a review. IEEE Access 8, 15529 (2020).CrossRef R. Sun, J. Lai, W. Chen, and B. Zhang, GaN power integration for high frequency and high efficiency power applications: a review. IEEE Access 8, 15529 (2020).CrossRef
8.
Zurück zum Zitat M. Meneghini, G. Meneghesso, and E. Zanoni, Power GaN Devices: Materials, Applications and Reliability (Zürich: Springer International Publishing, 2017), pp.15–50.CrossRef M. Meneghini, G. Meneghesso, and E. Zanoni, Power GaN Devices: Materials, Applications and Reliability (Zürich: Springer International Publishing, 2017), pp.15–50.CrossRef
9.
Zurück zum Zitat R. Mitova, R. Ghosh, U. Mhaskar, D. Klikic, M.X. Wang, and A. Dentella, Investigations of 600-V GaN HEMT and GaN diode for power converter applications. IEEE Trans. Power, Electron 29, 2441 (2014).CrossRef R. Mitova, R. Ghosh, U. Mhaskar, D. Klikic, M.X. Wang, and A. Dentella, Investigations of 600-V GaN HEMT and GaN diode for power converter applications. IEEE Trans. Power, Electron 29, 2441 (2014).CrossRef
10.
Zurück zum Zitat X. Li, M.V. Hove, M. Zhao, K. Geens, V. Lempinen, J. Sormunen, G. Groeseneken, and S. Decoutere, 200 V enhancement-mode p-GaN HEMTs fabricated on 200 mm GaN-on-SOI with trench isolation for monolithic integration. IEEE Electron Device Lett. 38, 918 (2017).CrossRef X. Li, M.V. Hove, M. Zhao, K. Geens, V. Lempinen, J. Sormunen, G. Groeseneken, and S. Decoutere, 200 V enhancement-mode p-GaN HEMTs fabricated on 200 mm GaN-on-SOI with trench isolation for monolithic integration. IEEE Electron Device Lett. 38, 918 (2017).CrossRef
11.
Zurück zum Zitat Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices. 54, 3393 (2007).CrossRef Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices. 54, 3393 (2007).CrossRef
12.
Zurück zum Zitat X. Liu, H.C. Chiu, C.H. Liu, H.L. Kao, C.W. Chiu, H.C. Wang, J. Ben, W. He, and C.R. Huang, Normally-off p-GaN gated AlGaN/GaN HEMTs using plasma oxidation technique in access region. IEEE J. Electron Device Soc. 8, 229 (2020).CrossRef X. Liu, H.C. Chiu, C.H. Liu, H.L. Kao, C.W. Chiu, H.C. Wang, J. Ben, W. He, and C.R. Huang, Normally-off p-GaN gated AlGaN/GaN HEMTs using plasma oxidation technique in access region. IEEE J. Electron Device Soc. 8, 229 (2020).CrossRef
13.
Zurück zum Zitat Y. Zhong, S. Su, X. Chen, Y. Zhou, J. He, H. Gao, X. Zhan, X. Guo, J. Liu, Q. Sun, and H. Yang, Normally-off HEMTs with regrown p-GaN gate and low-pressure chemical vapor deposition SiNx passivation by using an AlN pre-layer. IEEE Electron Device Lett. 40, 1495 (2019).CrossRef Y. Zhong, S. Su, X. Chen, Y. Zhou, J. He, H. Gao, X. Zhan, X. Guo, J. Liu, Q. Sun, and H. Yang, Normally-off HEMTs with regrown p-GaN gate and low-pressure chemical vapor deposition SiNx passivation by using an AlN pre-layer. IEEE Electron Device Lett. 40, 1495 (2019).CrossRef
14.
Zurück zum Zitat O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel and J. Würfl, Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN Buffer, in International Symposium on Power Semiconductor Devices, (2010), pp. 347–350. O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel and J. Würfl, Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN Buffer, in International Symposium on Power Semiconductor Devices, (2010), pp. 347–350.
15.
Zurück zum Zitat H. Handa, S. Ujita, D. Shibata, R. Kajitani, N. Shiozaki, M. Ogawa, H. Umeda, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida and T. Ueda, High-speed switching and current-collapse-free operation by GaN gate injection transistors with thick GaN buffer on bulk GaN substrates, in IEEE International Electron Devices Meeting (IEDM),, (2016), pp. 10.3.1–10.3.4. H. Handa, S. Ujita, D. Shibata, R. Kajitani, N. Shiozaki, M. Ogawa, H. Umeda, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida and T. Ueda, High-speed switching and current-collapse-free operation by GaN gate injection transistors with thick GaN buffer on bulk GaN substrates, in IEEE International Electron Devices Meeting (IEDM),, (2016), pp. 10.3.1–10.3.4.
16.
Zurück zum Zitat J. Si, J. Wei, W. Chen, and B. Zhang, Electric field distribution around drain-side gate edge in AlGaN/GaN HEMTs: analytical approach. IEEE Trans. Electron Devices 60, 3223 (2013).CrossRef J. Si, J. Wei, W. Chen, and B. Zhang, Electric field distribution around drain-side gate edge in AlGaN/GaN HEMTs: analytical approach. IEEE Trans. Electron Devices 60, 3223 (2013).CrossRef
17.
Zurück zum Zitat H. Jiang, R. Zhu, Q. Lyu, and K.M. Lau, High-voltage p-GaN HEMTs with off-state blocking capability after gate breakdown. IEEE Electron Device Lett. 40, 530 (2019).CrossRef H. Jiang, R. Zhu, Q. Lyu, and K.M. Lau, High-voltage p-GaN HEMTs with off-state blocking capability after gate breakdown. IEEE Electron Device Lett. 40, 530 (2019).CrossRef
18.
Zurück zum Zitat M.R. Peart, and J.J. Wierer, Edge termination for III-Nitride vertical power devices using polarization engineering. IEEE Trans. Electron Devices 67, 571 (2020).CrossRef M.R. Peart, and J.J. Wierer, Edge termination for III-Nitride vertical power devices using polarization engineering. IEEE Trans. Electron Devices 67, 571 (2020).CrossRef
19.
Zurück zum Zitat H. Wang, W. Mao, S. Zhao, J. Chen, M. Du, X. Zheng, C. Wang, C. Zhang, J. Zhang, and Y. Hao, Reverse blocking p-GaN gate AlGaN/GaN HEMTs with hybrid p-GaN ohmic drain. Superlattice Microstruct. 156, 106931 (2021).CrossRef H. Wang, W. Mao, S. Zhao, J. Chen, M. Du, X. Zheng, C. Wang, C. Zhang, J. Zhang, and Y. Hao, Reverse blocking p-GaN gate AlGaN/GaN HEMTs with hybrid p-GaN ohmic drain. Superlattice Microstruct. 156, 106931 (2021).CrossRef
20.
Zurück zum Zitat T. Wu, B. Bakeroot, H. Liang, N. Posthuma, S. You, N. Ronchi, S. Stoffels, D. Marcon, and S. Decoutere, Analysis of the gate capacitance–voltage characteristics in p-GaN/AlGaN/GaN heterostructures. IEEE Electron Device Lett. 38, 1696 (2017).CrossRef T. Wu, B. Bakeroot, H. Liang, N. Posthuma, S. You, N. Ronchi, S. Stoffels, D. Marcon, and S. Decoutere, Analysis of the gate capacitance–voltage characteristics in p-GaN/AlGaN/GaN heterostructures. IEEE Electron Device Lett. 38, 1696 (2017).CrossRef
21.
Zurück zum Zitat S. Gustafsson, J.T. Chen, J. Bergsten, U. Forsberg, M. Thorsell, E. Janzén, and N. Rorsman, Dispersive effects in microwave AlGaN/AlN/GaN HEMTs with carbon doped buffer. IEEE Trans. Electron Dev. 62, 2162 (2015).CrossRef S. Gustafsson, J.T. Chen, J. Bergsten, U. Forsberg, M. Thorsell, E. Janzén, and N. Rorsman, Dispersive effects in microwave AlGaN/AlN/GaN HEMTs with carbon doped buffer. IEEE Trans. Electron Dev. 62, 2162 (2015).CrossRef
22.
Zurück zum Zitat O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L.F. Eastman, Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter. 14, 339 (2002).CrossRef O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L.F. Eastman, Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter. 14, 339 (2002).CrossRef
23.
Zurück zum Zitat F. Liao, K. Zhang, N. Zeng, M. Lian, J. Li, X. Zhang, Z. Tian, and Y.-A. Yin, 2.2 kV breakdown voltage AlGaN/GaN schottky barrier diode with polarization doping modulated 3D hole gas cap layer and polarization junction structure. J. Electron Mater. 51, 3613 (2022).CrossRef F. Liao, K. Zhang, N. Zeng, M. Lian, J. Li, X. Zhang, Z. Tian, and Y.-A. Yin, 2.2 kV breakdown voltage AlGaN/GaN schottky barrier diode with polarization doping modulated 3D hole gas cap layer and polarization junction structure. J. Electron Mater. 51, 3613 (2022).CrossRef
24.
Zurück zum Zitat Y. Liu, Q. Yu, and J. Du, Simulation design of a high-breakdown-voltage p-GaN-gate GaN HEMT with a hybrid AlGaN buffer layer for power electronics applications. J. Comput. Electron 19, 1527 (2020).CrossRef Y. Liu, Q. Yu, and J. Du, Simulation design of a high-breakdown-voltage p-GaN-gate GaN HEMT with a hybrid AlGaN buffer layer for power electronics applications. J. Comput. Electron 19, 1527 (2020).CrossRef
25.
Zurück zum Zitat C. Bulutay, Electron initiated impact ionization in AlGaN alloys. Semicond. Sci. Technol. 17, L59 (2002).CrossRef C. Bulutay, Electron initiated impact ionization in AlGaN alloys. Semicond. Sci. Technol. 17, L59 (2002).CrossRef
26.
Zurück zum Zitat J. Du, H. Yan, C. Yin, Z. Feng, S. Dun, and Q. Yu, Simulation and characterization of millimeter-wave InAlN/GaN high electron mobility transistors using Lombardi mobility model. J. Appl. Phys. 115, 164510 (2014).CrossRef J. Du, H. Yan, C. Yin, Z. Feng, S. Dun, and Q. Yu, Simulation and characterization of millimeter-wave InAlN/GaN high electron mobility transistors using Lombardi mobility model. J. Appl. Phys. 115, 164510 (2014).CrossRef
28.
Zurück zum Zitat A.W. Ludikhuize, A review of RESURF technology, in Proceedings International Symposium Power Semiconductor.,, (2000) , pp. 11–18. A.W. Ludikhuize, A review of RESURF technology, in Proceedings International Symposium Power Semiconductor.,, (2000) , pp. 11–18.
29.
Zurück zum Zitat U.K. Mishra, P. Parikh, and Y.-F. Wu, AlGaN/GaN HEMTs an overview of device operation and applications. Proc. IEEE 90, 1022 (2002).CrossRef U.K. Mishra, P. Parikh, and Y.-F. Wu, AlGaN/GaN HEMTs an overview of device operation and applications. Proc. IEEE 90, 1022 (2002).CrossRef
30.
Zurück zum Zitat L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty, A. Chini, S. Keller, S.P. DenBaars, and U.K. Mishra, High-power polarization-engineered GaN/AlGaN/GaN HEMTs without surface passivation. IEEE Electron Device Lett. 25, 7 (2004).CrossRef L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty, A. Chini, S. Keller, S.P. DenBaars, and U.K. Mishra, High-power polarization-engineered GaN/AlGaN/GaN HEMTs without surface passivation. IEEE Electron Device Lett. 25, 7 (2004).CrossRef
31.
Zurück zum Zitat R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y. Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs. IEEE Electron Device Lett. 38, 1567 (2017).CrossRef R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y. Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs. IEEE Electron Device Lett. 38, 1567 (2017).CrossRef
32.
Zurück zum Zitat I. Hwang, H. Choi, J. Lee, H. S. Choi, J. Kim, J. Ha, C. Um, S. Hwang, Jaejoon, J. Kim, J. Shin, Y. Park, U. Chung, I. Yoo, and K. Kim, 1.6 kV, 2.9 mΩ cm2 Normally-off p-GaN HEMT Device, in Proceedings International Symposium Power Semiconductor , (2012), pp. 41–44. I. Hwang, H. Choi, J. Lee, H. S. Choi, J. Kim, J. Ha, C. Um, S. Hwang, Jaejoon, J. Kim, J. Shin, Y. Park, U. Chung, I. Yoo, and K. Kim, 1.6 kV, 2.9 mΩ cm2 Normally-off p-GaN HEMT Device, in Proceedings International Symposium Power Semiconductor , (2012), pp. 41–44.
33.
Zurück zum Zitat O. Hilt, P. Kotara, F. Brunner, A. Knauer, R. Zhytnytska, and J. Würfl, Improved vertical isolation for normally-off High voltage GaN-HFETs on n-SiC substrates. IEEE Trans. Electron Devices 60, 3084 (2013).CrossRef O. Hilt, P. Kotara, F. Brunner, A. Knauer, R. Zhytnytska, and J. Würfl, Improved vertical isolation for normally-off High voltage GaN-HFETs on n-SiC substrates. IEEE Trans. Electron Devices 60, 3084 (2013).CrossRef
34.
Zurück zum Zitat M. Xiao, Z. Du, J. Xie, E. Beam, X. Yan, K. Cheng, H. Wang, Y. Cao, and Y. Zhang, Lateral p-GaN/2DEG junction diodes by selectivearea p-GaN trench-filling-regrowth in AlGaN/GaN. Appl. Phys. Lett. 116, 053503 (2020).CrossRef M. Xiao, Z. Du, J. Xie, E. Beam, X. Yan, K. Cheng, H. Wang, Y. Cao, and Y. Zhang, Lateral p-GaN/2DEG junction diodes by selectivearea p-GaN trench-filling-regrowth in AlGaN/GaN. Appl. Phys. Lett. 116, 053503 (2020).CrossRef
35.
Zurück zum Zitat H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K.M. Lau, 1300 V normally-OFF p-GaN gate HEMTs on Si with high ON-state drain current. IEEE Trans. Electron Devices 68, 653 (2021).CrossRef H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K.M. Lau, 1300 V normally-OFF p-GaN gate HEMTs on Si with high ON-state drain current. IEEE Trans. Electron Devices 68, 653 (2021).CrossRef
36.
Zurück zum Zitat X. Wei, X. Zhang, C. Sun, W. Tang, C. Zeng, F. Chen, T. He, G. Yu, L. Song, W. Lin, X. Zhang, D. Zhao, W. Huang, Y. Cai, and B. Zhang, Improvement of breakdown voltage and ON-resistance in normally-off AlGaN/GaN HEMTs using etching-free p-GaN stripe array gate. IEEE Trans. Electron Devices 68, 5041 (2021).CrossRef X. Wei, X. Zhang, C. Sun, W. Tang, C. Zeng, F. Chen, T. He, G. Yu, L. Song, W. Lin, X. Zhang, D. Zhao, W. Huang, Y. Cai, and B. Zhang, Improvement of breakdown voltage and ON-resistance in normally-off AlGaN/GaN HEMTs using etching-free p-GaN stripe array gate. IEEE Trans. Electron Devices 68, 5041 (2021).CrossRef
37.
Zurück zum Zitat T. Huang, X. Zhu, K. M. Lau, Enhancement-mode AlN/GaN MOSHEMTs fabricated by selective area regrowth of AlGaN barrier layer, in Proceedings International Symposium Power Semiconductor, (2017), pp. 199–202. T. Huang, X. Zhu, K. M. Lau, Enhancement-mode AlN/GaN MOSHEMTs fabricated by selective area regrowth of AlGaN barrier layer, in Proceedings International Symposium Power Semiconductor, (2017), pp. 199–202.
38.
Zurück zum Zitat R. Gaska, M.S. Shur, and A.D. Bykhovski, Pyroelectric and piezoelectric properties of GaN-based materials. MRS Internet J. Nitride Semicond. Res. 4(Suppl 1), 57 (1999).CrossRef R. Gaska, M.S. Shur, and A.D. Bykhovski, Pyroelectric and piezoelectric properties of GaN-based materials. MRS Internet J. Nitride Semicond. Res. 4(Suppl 1), 57 (1999).CrossRef
39.
Zurück zum Zitat L. He, F. Yang, Y. Yao, Y. Zheng, J. Zhang, L. Li, Z. He, Y. Ni, X. Gu, and Y. Liu, A review of selective area grown recess structure for insulated-gate E-mode GaN transistors. Jpn. J. Appl. Phys. 59, 0SA0806 (2020).CrossRef L. He, F. Yang, Y. Yao, Y. Zheng, J. Zhang, L. Li, Z. He, Y. Ni, X. Gu, and Y. Liu, A review of selective area grown recess structure for insulated-gate E-mode GaN transistors. Jpn. J. Appl. Phys. 59, 0SA0806 (2020).CrossRef
40.
Zurück zum Zitat H.K. Cho, and G.M. Yang, Observation of inversion domain boundaries in Mg-doped AlGaN layers grown by metalorganic chemical vapor deposition. Appl. Surf. Sci. 200(1–4), 138 (2002).CrossRef H.K. Cho, and G.M. Yang, Observation of inversion domain boundaries in Mg-doped AlGaN layers grown by metalorganic chemical vapor deposition. Appl. Surf. Sci. 200(1–4), 138 (2002).CrossRef
Metadaten
Titel
Design of High Baliga’s Figure-of-Merit P-GaN Gate AlGaN/GaN Heterostructure Field-Effect Transistors with P-AlGaN Field Plates
verfasst von
Zhiyuan Bai
Song Chai
Chenchen Zhao
Liwei Wang
Publikationsdatum
03.04.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10378-x

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe