Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

20.03.2023 | Topical Collection: Advanced Metal Ion Batteries

Tailoring Sodium Iron Hexacyanoferrate/Carbon Nanotube Arrays with 3D Networks for Efficient Sodium Ion Storage

verfasst von: Linxuan He, Lingfeng Ruan, Weilin Yao, Chen Cai, Zihang Chen, Xinhao Chang, Juntao Shi, Tiancun Liu, Shenghui Shen, Zhujun Yao, Yefeng Yang

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sodium iron hexacyanoferrate (FeHCF), as Prussian blue, is a promising cathode for sodium ion batteries (SIBs) on account of its open framework structure. Here, FeHCF nanocubes anchored on carbon nanotube (CNT) arrays (FeHCF/CNTs-CC) as integrated electrodes for SIBs have been synthesized via the combination of chemical vapor deposition, immersion–oxidation, and single-iron-source methods. CNT arrays loaded on carbon cloth link FeHCF nanocubes and provide abundant pathways for electrons, as well as a large surface area for sodium ion exchange at the surface of the electrode and electrolyte to facilitate electrochemical kinetics. With the assistance of CNT arrays, FeHCF/CNTs-CC display outstanding high-rate capabilities (135 mA h g−1/0.1 A g−1 and 90 mA h g−1/2 A g−1), and good cycling stability with a capacity retention of 85% after 1000 cycles at 0.5 A g−1.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat S.Y. Dong, N. Lv, Y.L. Wu, Y.Z. Zhang, G.Y. Zhu, and X.C. Dong, Titanates for sodium-ion storage. Nano Today 42, 101349 (2022).CrossRef S.Y. Dong, N. Lv, Y.L. Wu, Y.Z. Zhang, G.Y. Zhu, and X.C. Dong, Titanates for sodium-ion storage. Nano Today 42, 101349 (2022).CrossRef
2.
Zurück zum Zitat J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou, H. Liu, and S. Dou, Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384 (2022).CrossRef J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou, H. Liu, and S. Dou, Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384 (2022).CrossRef
3.
Zurück zum Zitat C.A. Zhou, Z.J. Yao, X.H. Xia, X.L. Wang, C.D. Gu, and J.P. Tu, Low-strain titanium-based oxide electrodes for electrochemical energy storage devices: design, modification, and application. Mater. Today Nano 11, 100085 (2020).CrossRef C.A. Zhou, Z.J. Yao, X.H. Xia, X.L. Wang, C.D. Gu, and J.P. Tu, Low-strain titanium-based oxide electrodes for electrochemical energy storage devices: design, modification, and application. Mater. Today Nano 11, 100085 (2020).CrossRef
4.
Zurück zum Zitat Z. Zhao, X. Teng, Q. Xiong, H. Chi, Y. Yuan, H. Qin, and Z. Ji, Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage. Sustain. Mater. Technol. 29, e00313 (2021). Z. Zhao, X. Teng, Q. Xiong, H. Chi, Y. Yuan, H. Qin, and Z. Ji, Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage. Sustain. Mater. Technol. 29, e00313 (2021).
5.
Zurück zum Zitat C. Li, J. Hou, J. Zhang, X. Li, S. Jiang, G. Zhang, Z. Yao, T. Liu, S. Shen, Z. Liu, X. Xia, J. Xiong, and Y. Yang, Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci. China Chem. 65, 1420 (2022).CrossRef C. Li, J. Hou, J. Zhang, X. Li, S. Jiang, G. Zhang, Z. Yao, T. Liu, S. Shen, Z. Liu, X. Xia, J. Xiong, and Y. Yang, Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci. China Chem. 65, 1420 (2022).CrossRef
6.
Zurück zum Zitat Yu. Zhihong Tian, J.Z. Zhang, Q. Li, T. Liu, and M. Antonietti, A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view. Adv. Energy Mater. 11, 2102489 (2021).CrossRef Yu. Zhihong Tian, J.Z. Zhang, Q. Li, T. Liu, and M. Antonietti, A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view. Adv. Energy Mater. 11, 2102489 (2021).CrossRef
7.
Zurück zum Zitat L. Kong, M. Liu, H. Huang, Xu. Yunhua, and Bu. Xian-He, Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv. Energy Mater. 12, 2100172 (2022).CrossRef L. Kong, M. Liu, H. Huang, Xu. Yunhua, and Bu. Xian-He, Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv. Energy Mater. 12, 2100172 (2022).CrossRef
8.
Zurück zum Zitat M. Shaharyar Wani, U. Anjum, T.S. Khan, R.S. Dhaka, and M. Ali Haider, Understanding Na-Ion transport in NaxV4O10 electrode material for sodium-ion batteries. J. Electron. Mater. 50, 1794 (2021).CrossRef M. Shaharyar Wani, U. Anjum, T.S. Khan, R.S. Dhaka, and M. Ali Haider, Understanding Na-Ion transport in NaxV4O10 electrode material for sodium-ion batteries. J. Electron. Mater. 50, 1794 (2021).CrossRef
9.
Zurück zum Zitat Y. Liu, J. Liao, Z. Tang, Y. Chao, W. Chen, X. Wu, and W. Wu, Improved sodium storage performance of Zn-substituted P3-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium-ion batteries. J. Electron. Mater. 52, 864 (2023).CrossRef Y. Liu, J. Liao, Z. Tang, Y. Chao, W. Chen, X. Wu, and W. Wu, Improved sodium storage performance of Zn-substituted P3-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium-ion batteries. J. Electron. Mater. 52, 864 (2023).CrossRef
10.
Zurück zum Zitat Y. Xia, X.H. Ren, Z. Xiao, Y.P. Gan, J. Zhang, H. Huang, X.P. He, Q.Z. Mao, G.G. Wang, and W.K. Zhang, Spinel LiNi0.5Mn1.5O4 shell enables Ni-rich layered oxide cathode with improved cycling stability and rate capability for high-energy lithium-ion batteries. Electrochim. Acta 418, 140352 (2022).CrossRef Y. Xia, X.H. Ren, Z. Xiao, Y.P. Gan, J. Zhang, H. Huang, X.P. He, Q.Z. Mao, G.G. Wang, and W.K. Zhang, Spinel LiNi0.5Mn1.5O4 shell enables Ni-rich layered oxide cathode with improved cycling stability and rate capability for high-energy lithium-ion batteries. Electrochim. Acta 418, 140352 (2022).CrossRef
11.
Zurück zum Zitat T.F. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022). T.F. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022).
12.
Zurück zum Zitat D. Zhou, X. Guo, Q. Zhang, Y. Shi, H. Zhang, Yu. Chao, and H. Pang, Nickel-based materials for advanced rechargeable batteries. Adv. Funct. Mater. 32, 2107928 (2022).CrossRef D. Zhou, X. Guo, Q. Zhang, Y. Shi, H. Zhang, Yu. Chao, and H. Pang, Nickel-based materials for advanced rechargeable batteries. Adv. Funct. Mater. 32, 2107928 (2022).CrossRef
13.
Zurück zum Zitat H. Zhang, Y. Gao, X.-H. Liu, Z. Yang, X.-X. He, Li. Li, Y. Qiao, W.-H. Chen, R.-H. Zeng, Y. Wang, and S.-L. Chou, Organic cathode materials for sodium-ion batteries: from fundamental research to potential commercial application. Adv. Funct. Mater. 32, 2107718 (2022).CrossRef H. Zhang, Y. Gao, X.-H. Liu, Z. Yang, X.-X. He, Li. Li, Y. Qiao, W.-H. Chen, R.-H. Zeng, Y. Wang, and S.-L. Chou, Organic cathode materials for sodium-ion batteries: from fundamental research to potential commercial application. Adv. Funct. Mater. 32, 2107718 (2022).CrossRef
14.
Zurück zum Zitat W. Li, Z. Yao, Y. Liu, S. Zhang, X. Wang, X. Xia, C. Gu, and J. Tu, Optimizing quasi-solid-state sodium storage performance of Na3V2(PO4)2F2.5O0.5 cathode by structural design plus nitrogen doping. Chem. Eng. J. 433, 133557 (2022).CrossRef W. Li, Z. Yao, Y. Liu, S. Zhang, X. Wang, X. Xia, C. Gu, and J. Tu, Optimizing quasi-solid-state sodium storage performance of Na3V2(PO4)2F2.5O0.5 cathode by structural design plus nitrogen doping. Chem. Eng. J. 433, 133557 (2022).CrossRef
15.
Zurück zum Zitat X. Han, Q. Zhang, H. Liu, and J. Sun, Metal-Perylene-3,4,9,10-tetracarboxylate as a promising anode material for sodium ion batteries. J. Electron. Mater. 48, 5055 (2019).CrossRef X. Han, Q. Zhang, H. Liu, and J. Sun, Metal-Perylene-3,4,9,10-tetracarboxylate as a promising anode material for sodium ion batteries. J. Electron. Mater. 48, 5055 (2019).CrossRef
16.
Zurück zum Zitat A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie, W. Zhang, H. Gao, L. Xue, and J. Li, Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11, 2000943 (2020).CrossRef A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie, W. Zhang, H. Gao, L. Xue, and J. Li, Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11, 2000943 (2020).CrossRef
17.
Zurück zum Zitat Y. Yuan, D. Bin, X. Dong, Y. Wang, C. Wang, and Y. Xia, Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery. ACS Sustain. Chem. Eng. 8, 3655 (2020).CrossRef Y. Yuan, D. Bin, X. Dong, Y. Wang, C. Wang, and Y. Xia, Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery. ACS Sustain. Chem. Eng. 8, 3655 (2020).CrossRef
18.
Zurück zum Zitat P. Wan, H. Xie, N. Zhang, S. Zhu, C. Wang, Yu. Zhen, W. Chu, Li. Song, and S. Wei, Stepwise hollow Prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode. Adv. Funct. Mater. 30, 2002624 (2020).CrossRef P. Wan, H. Xie, N. Zhang, S. Zhu, C. Wang, Yu. Zhen, W. Chu, Li. Song, and S. Wei, Stepwise hollow Prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode. Adv. Funct. Mater. 30, 2002624 (2020).CrossRef
19.
Zurück zum Zitat D. Zhang, Z. Yang, J. Zhang, H. Mao, J. Yang, and Y. Qian, Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries. J. Power Sources 399, 1 (2018).CrossRef D. Zhang, Z. Yang, J. Zhang, H. Mao, J. Yang, and Y. Qian, Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries. J. Power Sources 399, 1 (2018).CrossRef
20.
Zurück zum Zitat Z. Wang, Ye. Liu, Wu. Zhijun, G. Guan, D. Zhang, H. Zheng, Xu. Shoudong, S. Liu, and X. Hao, A string of nickel hexacyanoferrate nanocubes coaxially grown on a CNT@bipolar conducting polymer as a high-performance cathode material for sodium-ion batteries. Nanoscale 9, 823 (2017).CrossRef Z. Wang, Ye. Liu, Wu. Zhijun, G. Guan, D. Zhang, H. Zheng, Xu. Shoudong, S. Liu, and X. Hao, A string of nickel hexacyanoferrate nanocubes coaxially grown on a CNT@bipolar conducting polymer as a high-performance cathode material for sodium-ion batteries. Nanoscale 9, 823 (2017).CrossRef
21.
Zurück zum Zitat Y.-C. Lin, C.-H. Chuang, L.-Y. Hsiao, M.-H. Yeh, and K.-C. Ho, Oxygen plasma activation of carbon nanotubes-interconnected Prussian blue analogue for oxygen evolution reaction. ACS Appl. Mater. Interfaces 12, 42634 (2020).CrossRef Y.-C. Lin, C.-H. Chuang, L.-Y. Hsiao, M.-H. Yeh, and K.-C. Ho, Oxygen plasma activation of carbon nanotubes-interconnected Prussian blue analogue for oxygen evolution reaction. ACS Appl. Mater. Interfaces 12, 42634 (2020).CrossRef
22.
Zurück zum Zitat H. Wang, E. Xu, S. Yu, D. Li, J. Quan, L. Xu, L. Wang, and Y. Jiang, Reduced graphene oxide-anchored manganese hexacyanoferrate with low interstitial H2O for superior sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 34222 (2018).CrossRef H. Wang, E. Xu, S. Yu, D. Li, J. Quan, L. Xu, L. Wang, and Y. Jiang, Reduced graphene oxide-anchored manganese hexacyanoferrate with low interstitial H2O for superior sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 34222 (2018).CrossRef
23.
Zurück zum Zitat C. Li, C. Zheng, F. Cao, Y.Q. Zhang, and X.H. Xia, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).CrossRef C. Li, C. Zheng, F. Cao, Y.Q. Zhang, and X.H. Xia, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).CrossRef
24.
Zurück zum Zitat J. Luo, S. Sun, J. Peng, B. Liu, Y. Huang, K. Wang, Q. Zhang, Y. Li, Y. Jin, Y. Liu, Y. Qiu, Q. Li, J. Han, and Y. Huang, Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 25317 (2017).CrossRef J. Luo, S. Sun, J. Peng, B. Liu, Y. Huang, K. Wang, Q. Zhang, Y. Li, Y. Jin, Y. Liu, Y. Qiu, Q. Li, J. Han, and Y. Huang, Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 25317 (2017).CrossRef
25.
Zurück zum Zitat Y. Tang, W. Zhang, L. Xue, X. Ding, T. Wang, X. Liu, J. Liu, X. Li, and Y. Huang, Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries. J. Mater. Chem. A 4, 6036 (2016).CrossRef Y. Tang, W. Zhang, L. Xue, X. Ding, T. Wang, X. Liu, J. Liu, X. Li, and Y. Huang, Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries. J. Mater. Chem. A 4, 6036 (2016).CrossRef
26.
Zurück zum Zitat Y.F. Yuan, Q. Chen, M. Zhu, G.S. Cai, and S.Y. Guo, Nano tube-in-tube CNT@void@TiO2@C with excellent ultrahigh rate capability and long cycling stability for lithium ion storage. J. Alloys Compd. 851, 156795 (2021).CrossRef Y.F. Yuan, Q. Chen, M. Zhu, G.S. Cai, and S.Y. Guo, Nano tube-in-tube CNT@void@TiO2@C with excellent ultrahigh rate capability and long cycling stability for lithium ion storage. J. Alloys Compd. 851, 156795 (2021).CrossRef
27.
Zurück zum Zitat X. Zhang, Y. Chen, M. Chen, B. Wang, Yu. Bo, X. Wang, W. Zhang, and D. Yang, FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation. Nanoscale 12, 3777 (2020).CrossRef X. Zhang, Y. Chen, M. Chen, B. Wang, Yu. Bo, X. Wang, W. Zhang, and D. Yang, FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation. Nanoscale 12, 3777 (2020).CrossRef
28.
Zurück zum Zitat G. Shen, Z. Liu, P. Liu, J. Duan, H.A. Younus, H. Deng, X. Wang, and S. Zhang, Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium-sulfur batteries. J. Mater. Chem. A 8, 1154 (2020).CrossRef G. Shen, Z. Liu, P. Liu, J. Duan, H.A. Younus, H. Deng, X. Wang, and S. Zhang, Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium-sulfur batteries. J. Mater. Chem. A 8, 1154 (2020).CrossRef
29.
Zurück zum Zitat S. Chen, S. Fan, D. Xiong, M.E. Pam, Y. Wang, Y. Shi, and H.Y. Yang, Nanoframes@CNT beads-on-a-string structures: toward an advanced high-stable sodium-ion full battery. Small 16, 2005095 (2020).CrossRef S. Chen, S. Fan, D. Xiong, M.E. Pam, Y. Wang, Y. Shi, and H.Y. Yang, Nanoframes@CNT beads-on-a-string structures: toward an advanced high-stable sodium-ion full battery. Small 16, 2005095 (2020).CrossRef
30.
Zurück zum Zitat R. Li, X. Liu, W. Qui, and M. Zhang, In vivo monitoring of H2O2 with polydopamine and Prussian blue-coated microelectrode. Anal. Chem. 88, 7769 (2016).CrossRef R. Li, X. Liu, W. Qui, and M. Zhang, In vivo monitoring of H2O2 with polydopamine and Prussian blue-coated microelectrode. Anal. Chem. 88, 7769 (2016).CrossRef
31.
Zurück zum Zitat S. Zhang, G. Wang, B. Wang, J. Wang, J. Bai, and H. Wang, 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 30, 2001592 (2020).CrossRef S. Zhang, G. Wang, B. Wang, J. Wang, J. Bai, and H. Wang, 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 30, 2001592 (2020).CrossRef
32.
Zurück zum Zitat J. Lin, K. Li, M. Wang, X. Chen, J. Liu, and H. Tang, Reagentless and sensitive determination of carcinoembryonic antigen based on a stable Prussian blue modified electrode. RSC Adv. 10, 38316 (2020).CrossRef J. Lin, K. Li, M. Wang, X. Chen, J. Liu, and H. Tang, Reagentless and sensitive determination of carcinoembryonic antigen based on a stable Prussian blue modified electrode. RSC Adv. 10, 38316 (2020).CrossRef
33.
Zurück zum Zitat Y. Li, K.-h Lam, and X. Hou, CNT-modified two-phase manganese hexacyanoferrate as a superior cathode for sodium-ion batteries. Inorg. Chem. Front. 8, 1819 (2021).CrossRef Y. Li, K.-h Lam, and X. Hou, CNT-modified two-phase manganese hexacyanoferrate as a superior cathode for sodium-ion batteries. Inorg. Chem. Front. 8, 1819 (2021).CrossRef
34.
Zurück zum Zitat X. Zhang, Y. Chen, M. Chen, Yu. Bo, B. Wang, X. Wang, W. Zhang, and D. Yang, MOF derived multi-metal oxides anchored N, P-doped carbon matrix as efficient and durable electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 581, 608 (2021).CrossRef X. Zhang, Y. Chen, M. Chen, Yu. Bo, B. Wang, X. Wang, W. Zhang, and D. Yang, MOF derived multi-metal oxides anchored N, P-doped carbon matrix as efficient and durable electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 581, 608 (2021).CrossRef
35.
Zurück zum Zitat N. Vishnu, A. Senthil Kumar, and S. Badhulika, Selective in-situ derivatization of intrinsic nickel to nickel hexacyanoferrate on carbon nanotube and its application for electrochemical sensing of hydrazine. J. Electroanal. Chem. 837, 60 (2019).CrossRef N. Vishnu, A. Senthil Kumar, and S. Badhulika, Selective in-situ derivatization of intrinsic nickel to nickel hexacyanoferrate on carbon nanotube and its application for electrochemical sensing of hydrazine. J. Electroanal. Chem. 837, 60 (2019).CrossRef
36.
Zurück zum Zitat Z. Yao, X. Xia, C.A. Zhou, Y. Zhong, Y. Wang, S. Deng, W. Wang, X. Wang, and J. Tu, Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018).CrossRef Z. Yao, X. Xia, C.A. Zhou, Y. Zhong, Y. Wang, S. Deng, W. Wang, X. Wang, and J. Tu, Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018).CrossRef
37.
Zurück zum Zitat X.J. Li, Y. Zhao, W.G. Chu, Y. Wang, Z.J. Li, P. Jiang, X.C. Zhao, M.H. Liang, and Y. Liu, Vertically aligned carbon nanotube@MnO2 nanosheet arrays grown on carbon cloth for high performance flexible electrodes of supercapacitors. RSC Adv. 5, 77437 (2015).CrossRef X.J. Li, Y. Zhao, W.G. Chu, Y. Wang, Z.J. Li, P. Jiang, X.C. Zhao, M.H. Liang, and Y. Liu, Vertically aligned carbon nanotube@MnO2 nanosheet arrays grown on carbon cloth for high performance flexible electrodes of supercapacitors. RSC Adv. 5, 77437 (2015).CrossRef
38.
Zurück zum Zitat L. Yang, Q. Liu, M. Wan, Yu. Jiayu Peng, H.Z. Luo, J. Ren, L. Xue, and W. Zhang, Surface passivation of NaxFe[Fe(CN)6] cathode to improve its electrochemical kinetics and stability in sodium-ion batteries. J. Power Sources 448, 227421 (2020).CrossRef L. Yang, Q. Liu, M. Wan, Yu. Jiayu Peng, H.Z. Luo, J. Ren, L. Xue, and W. Zhang, Surface passivation of NaxFe[Fe(CN)6] cathode to improve its electrochemical kinetics and stability in sodium-ion batteries. J. Power Sources 448, 227421 (2020).CrossRef
39.
Zurück zum Zitat Y. You, X. Yu, Y. Yin, K.-W. Nam, and Y.-G. Guo, Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 8, 117 (2014).CrossRef Y. You, X. Yu, Y. Yin, K.-W. Nam, and Y.-G. Guo, Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 8, 117 (2014).CrossRef
40.
Zurück zum Zitat M.M. Barsan, I.S. Butler, J. Fitzpatrick, and D.F.R. Gilson, High-pressure studies of the micro-Raman spectra of iron cyanide complexes: Prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O). J. Raman Spectrosc. 42, 1820 (2011).CrossRef M.M. Barsan, I.S. Butler, J. Fitzpatrick, and D.F.R. Gilson, High-pressure studies of the micro-Raman spectra of iron cyanide complexes: Prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O). J. Raman Spectrosc. 42, 1820 (2011).CrossRef
41.
Zurück zum Zitat K.W. Chapman, P.J. Chupas, and C.J. Kepert, Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M ) Mn, Fe Co, Ni, Cu, Zn, Cd). J. Am. Chem. Soc. 128, 7009 (2006).CrossRef K.W. Chapman, P.J. Chupas, and C.J. Kepert, Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M ) Mn, Fe Co, Ni, Cu, Zn, Cd). J. Am. Chem. Soc. 128, 7009 (2006).CrossRef
42.
Zurück zum Zitat R. Mažeikienė, G. Niaura, and A. Malinauskas, Electrochemical redox processes at cobalt hexacyanoferrate modified electrodes: an in situ Raman spectroelectrochemical study. J. Electroanal. Chem. 719, 60 (2014).CrossRef R. Mažeikienė, G. Niaura, and A. Malinauskas, Electrochemical redox processes at cobalt hexacyanoferrate modified electrodes: an in situ Raman spectroelectrochemical study. J. Electroanal. Chem. 719, 60 (2014).CrossRef
43.
Zurück zum Zitat Xu. Yifan, Du. Yichen, Z. Yi, Z. Zhang, C. Lai, J. Liao, and X. Zhou, Coupling Co3[Co(CN)6]2 nanocubes with reduced graphene oxide for high-rate and long-cycle-life potassium storage. J. Energy Chem. 58, 593 (2021).CrossRef Xu. Yifan, Du. Yichen, Z. Yi, Z. Zhang, C. Lai, J. Liao, and X. Zhou, Coupling Co3[Co(CN)6]2 nanocubes with reduced graphene oxide for high-rate and long-cycle-life potassium storage. J. Energy Chem. 58, 593 (2021).CrossRef
44.
Zurück zum Zitat M. Wan, Y. Tang, L. Wang, X. Xiang, X. Li, K. Chen, L. Xue, W. Zhang, and Y. Huang, Core–shell hexacyanoferrate for superior Na-ion batteries. J. Power Sources 329, 290 (2016).CrossRef M. Wan, Y. Tang, L. Wang, X. Xiang, X. Li, K. Chen, L. Xue, W. Zhang, and Y. Huang, Core–shell hexacyanoferrate for superior Na-ion batteries. J. Power Sources 329, 290 (2016).CrossRef
45.
Zurück zum Zitat P. Zhang, Xu. Chunliu, J. Zhao, Y. Ma, Hu. Xin, L. Hao, X. Li, Y. Yang, Xu. Shuyin, H. Liu, and Hu. Yong-Sheng, Rapid and solvent-free mechanochemical synthesis of Na iron hexacyanoferrate for high-performance Na-Ion batteries. Mater. Today Energy 27, 101027 (2022).CrossRef P. Zhang, Xu. Chunliu, J. Zhao, Y. Ma, Hu. Xin, L. Hao, X. Li, Y. Yang, Xu. Shuyin, H. Liu, and Hu. Yong-Sheng, Rapid and solvent-free mechanochemical synthesis of Na iron hexacyanoferrate for high-performance Na-Ion batteries. Mater. Today Energy 27, 101027 (2022).CrossRef
Metadaten
Titel
Tailoring Sodium Iron Hexacyanoferrate/Carbon Nanotube Arrays with 3D Networks for Efficient Sodium Ion Storage
verfasst von
Linxuan He
Lingfeng Ruan
Weilin Yao
Chen Cai
Zihang Chen
Xinhao Chang
Juntao Shi
Tiancun Liu
Shenghui Shen
Zhujun Yao
Yefeng Yang
Publikationsdatum
20.03.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10337-6

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe