Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

16.03.2023 | Original Research Article

Sputter-Deposited Nano-porous ZnO Electrode for Highly Efficient Optoelectronic and Solid-State Energy Storage Devices

verfasst von: Gaurav Malik, Satyendra Kumar Mourya, Ananya Garg, Priyanka, Ramesh Chandra

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work demonstrates a direct sputtering synthesis approach for a nano-porous ZnO electrode on indium tin oxide (ITO) substrate. Various sophisticated material characterization analytical tools confirmed successful growth of the electrode. The electrochromic and electrochemical performance of the fabricated electrode was examined using two well-known techniques, UV–Vis spectroscopy and cyclic voltammetry (CV). Contact angle measurement for droplet stability revealed dynamic wetting behavior (87.2° ≥ θw ≥ 57.9°) and surface energy variation (50.02 ≥ γSL ≥ 18.48 mN/m). This nano-porous structure-based electrochemically active electrode exhibited scaled electrochromic and capacitive performance, i.e., good optical transmittance modulation (24%), optical density change (ΔOD) (0.206), coloration efficiency (31.8 cm2C−1), and specific (331 F/g) and areal capacitance (79.4 mF cm−2). The cyclic durability of the electrode was found to be highly stable, which may be attributed to a significant drop in the specific capacitance (14.7%) after 5000 cycles. These results indicated that this porous nanostructure promotes the penetration of aqueous electrolyte and alleviates diffusion. The results confirm the excellent prospects of novel and cheap ZnO-based electrodes with integrated functionality for efficient optoelectronic and solid-state energy storage devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie, X.W. Lou, and X. Wei Sun, A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5, 4921 (2014). J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie, X.W. Lou, and X. Wei Sun, A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5, 4921 (2014).
2.
Zurück zum Zitat G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A.L.-S. Eh, and P.S. Lee, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015).CrossRef G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A.L.-S. Eh, and P.S. Lee, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015).CrossRef
3.
Zurück zum Zitat A.A. Solovyev, A.N. Zakharov, S.V. Rabotkin, and N.F. Kovsharov, Electrochromic device with polymer electrolyte. J. Electron. Mater. 45, 3866–3871 (2016).CrossRef A.A. Solovyev, A.N. Zakharov, S.V. Rabotkin, and N.F. Kovsharov, Electrochromic device with polymer electrolyte. J. Electron. Mater. 45, 3866–3871 (2016).CrossRef
4.
Zurück zum Zitat G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P.S. Lee, Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016).CrossRef G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, and P.S. Lee, Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016).CrossRef
5.
Zurück zum Zitat W.J. Lee, Y.K. Fang, J.J. Ho, W.T. Hsieh, S.F. Ting, D. Huang, and Fang C.H., Effects of surface porosity on tungsten trioxide(WO3) films’ electrochromic performance. J. Electron. Mater. 29, 183–187 (2000). W.J. Lee, Y.K. Fang, J.J. Ho, W.T. Hsieh, S.F. Ting, D. Huang, and Fang C.H., Effects of surface porosity on tungsten trioxide(WO3) films’ electrochromic performance. J. Electron. Mater. 29, 183–187 (2000).
6.
Zurück zum Zitat R.J. Mortimer, A.L. Dyer, and J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 27, 2 (2006).CrossRef R.J. Mortimer, A.L. Dyer, and J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 27, 2 (2006).CrossRef
7.
Zurück zum Zitat E. Lee, E. Claybaugh, and M. LaFrance, End user impacts of automated electrochromic windows in a pilot retrofit application. Energy Build. 47, 267–284 (2012).CrossRef E. Lee, E. Claybaugh, and M. LaFrance, End user impacts of automated electrochromic windows in a pilot retrofit application. Energy Build. 47, 267–284 (2012).CrossRef
8.
Zurück zum Zitat M. Kitao, H. Akram, K. Urabe, and S. Yamada, Properties of solid-state electrochromic cells using Ta2O5 as electrolyte. J. Electron. Mater. 21, 419–422 (1992).CrossRef M. Kitao, H. Akram, K. Urabe, and S. Yamada, Properties of solid-state electrochromic cells using Ta2O5 as electrolyte. J. Electron. Mater. 21, 419–422 (1992).CrossRef
9.
Zurück zum Zitat Y. Chen, Y. Wang, P. Sun, P. Yang, L. Du, and W. Mai, Nickel oxide nanoflake-based bifunctional lass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 3, 20614–22061 (2015).CrossRef Y. Chen, Y. Wang, P. Sun, P. Yang, L. Du, and W. Mai, Nickel oxide nanoflake-based bifunctional lass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 3, 20614–22061 (2015).CrossRef
10.
Zurück zum Zitat V. Jain, H.M. Yochum, R. Montazami, and J.R. Heflin, Millisecond Switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers. Appl. Phys. Lett. 92, 033304 (2008).CrossRef V. Jain, H.M. Yochum, R. Montazami, and J.R. Heflin, Millisecond Switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers. Appl. Phys. Lett. 92, 033304 (2008).CrossRef
11.
Zurück zum Zitat D. Wei, M.R. Scherer, C. Bower, P. Andrew, T. Ryhanen, and U. Steiner, A nanostructured electrochromic supercapacitor. Nano Lett. 12, 1857–1862 (2012).CrossRef D. Wei, M.R. Scherer, C. Bower, P. Andrew, T. Ryhanen, and U. Steiner, A nanostructured electrochromic supercapacitor. Nano Lett. 12, 1857–1862 (2012).CrossRef
12.
Zurück zum Zitat H. Bishwakarma and A.K. Das, Synthesis of zinc oxide nanoparticles through hybrid machining process and their application in supercapacitors. J. Electron. Mater. 49, 1541–1549 (2020).CrossRef H. Bishwakarma and A.K. Das, Synthesis of zinc oxide nanoparticles through hybrid machining process and their application in supercapacitors. J. Electron. Mater. 49, 1541–1549 (2020).CrossRef
13.
Zurück zum Zitat K. Lu, D. Li, X. Gao, H. Dai, N. Wang, and H. Ma, An advanced aqueous sodium-ion supercapacitor with a manganous hexacyanoferrate cathode and a Fe3O4/rGO anode. J. Mater. Chem. A 3, 16013–16019 (2015).CrossRef K. Lu, D. Li, X. Gao, H. Dai, N. Wang, and H. Ma, An advanced aqueous sodium-ion supercapacitor with a manganous hexacyanoferrate cathode and a Fe3O4/rGO anode. J. Mater. Chem. A 3, 16013–16019 (2015).CrossRef
14.
Zurück zum Zitat F. Wang, X. Zhan, Z. Cheng, Q. Wang, Z. Wang, F. Wang, K. Xu, Y. Huang, M. Safdar, and J. He, A high-energy-density asymmetric microsupercapacitor for integrated energy systems. Adv. Electron. Mater. 1, 1400053 (2015).CrossRef F. Wang, X. Zhan, Z. Cheng, Q. Wang, Z. Wang, F. Wang, K. Xu, Y. Huang, M. Safdar, and J. He, A high-energy-density asymmetric microsupercapacitor for integrated energy systems. Adv. Electron. Mater. 1, 1400053 (2015).CrossRef
15.
Zurück zum Zitat P. Yang, P. Sun, Z. Chai, L. Huang, X. Cai, S. Tan, J. Song, and W. Mai, Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem. Int. Ed. 53, 11935–11939 (2014).CrossRef P. Yang, P. Sun, Z. Chai, L. Huang, X. Cai, S. Tan, J. Song, and W. Mai, Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem. Int. Ed. 53, 11935–11939 (2014).CrossRef
16.
Zurück zum Zitat Y. Tian, S. Cong, W. Su, H. Chen, Q. Li, F. Geng, and Z. Zhao, Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 14, 2150–2156 (2014).CrossRef Y. Tian, S. Cong, W. Su, H. Chen, Q. Li, F. Geng, and Z. Zhao, Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 14, 2150–2156 (2014).CrossRef
17.
Zurück zum Zitat X. He and J. Bae, Facile synthesis of amorphous CuO nanosheets on nickel foam by utilizing ZnO nanowires for high-performance supercapacitors. J. Electron. Mater. 47, 5468–5476 (2018).CrossRef X. He and J. Bae, Facile synthesis of amorphous CuO nanosheets on nickel foam by utilizing ZnO nanowires for high-performance supercapacitors. J. Electron. Mater. 47, 5468–5476 (2018).CrossRef
18.
Zurück zum Zitat Y. Chen, Y. Wang, P. Sun, P. Yang, L. Du, and W. Mai, Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 3, 20614–20618 (2015).CrossRef Y. Chen, Y. Wang, P. Sun, P. Yang, L. Du, and W. Mai, Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 3, 20614–20618 (2015).CrossRef
19.
Zurück zum Zitat G. Cheng, J. Xu, C. Dong, W. Yang, T. Kou, and Z. Zhang, Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors. J. Mater. Chem. A 2, 17307–17313 (2014).CrossRef G. Cheng, J. Xu, C. Dong, W. Yang, T. Kou, and Z. Zhang, Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors. J. Mater. Chem. A 2, 17307–17313 (2014).CrossRef
20.
Zurück zum Zitat D. Kalpana, K.S. Omkumar, S.S. Kumar, and N.G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim. Acta 52(3), 1309–1315 (2006).CrossRef D. Kalpana, K.S. Omkumar, S.S. Kumar, and N.G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim. Acta 52(3), 1309–1315 (2006).CrossRef
21.
Zurück zum Zitat Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun, and B.K. Tay, Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ion. 180, 1525–1528 (2009).CrossRef Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun, and B.K. Tay, Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ion. 180, 1525–1528 (2009).CrossRef
22.
Zurück zum Zitat Y. Zhang, H. Li, T. Lu, L. Pan, and Z. Sun, Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68–71 (2009).CrossRef Y. Zhang, H. Li, T. Lu, L. Pan, and Z. Sun, Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68–71 (2009).CrossRef
23.
Zurück zum Zitat M. Jayalakshmi, M. Palaniappa, and K. Balasubramanian, Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application. Int. J. Electrochem. Sci. 3, 96–103 (2008). M. Jayalakshmi, M. Palaniappa, and K. Balasubramanian, Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application. Int. J. Electrochem. Sci. 3, 96–103 (2008).
24.
Zurück zum Zitat K.K. Purushothaman, V.S. Priya, S. Nagamuthu, S. Vijayakumar, and G. Muralidharan, Synthesising of ZnO nanopetals for supercapacitor applications. Micro Nano Lett. 6(8), 668–670 (2011).CrossRef K.K. Purushothaman, V.S. Priya, S. Nagamuthu, S. Vijayakumar, and G. Muralidharan, Synthesising of ZnO nanopetals for supercapacitor applications. Micro Nano Lett. 6(8), 668–670 (2011).CrossRef
25.
Zurück zum Zitat X. Dong, Y. Cao, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, and P. Chen, Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2, 4364–4369 (2012).CrossRef X. Dong, Y. Cao, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, and P. Chen, Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2, 4364–4369 (2012).CrossRef
26.
Zurück zum Zitat P.E. Saranya and S. Selladrai, Facile synthesis of self-assembled flower-like mesoporous zinc oxide nanoflakes for energy application. Int. J. Nanosci. 16, 1760002–1760015 (2017). P.E. Saranya and S. Selladrai, Facile synthesis of self-assembled flower-like mesoporous zinc oxide nanoflakes for energy application. Int. J. Nanosci. 16, 1760002–1760015 (2017).
27.
Zurück zum Zitat T. Prabhuraj, S. Prabhu, E. Dhandapani, N. Duraisamy, R. Ramesh, K.R. Kumar, and P. Maadeswaran, Bifunctional ZnO sphere/r-GO composites for supercapacitor and photocatalytic activity of organic dye degradation. Diamond Relat. Mater. 120, 108592 (2021).CrossRef T. Prabhuraj, S. Prabhu, E. Dhandapani, N. Duraisamy, R. Ramesh, K.R. Kumar, and P. Maadeswaran, Bifunctional ZnO sphere/r-GO composites for supercapacitor and photocatalytic activity of organic dye degradation. Diamond Relat. Mater. 120, 108592 (2021).CrossRef
28.
Zurück zum Zitat K. Wang, H. Wu, Y. Meng, Y. Zhang, and Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 5, 8384 (2012).CrossRef K. Wang, H. Wu, Y. Meng, Y. Zhang, and Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 5, 8384 (2012).CrossRef
29.
Zurück zum Zitat G. Malik, J. Jaiswal, S. Mourya, and R. Chandra, Optical and other physical properties of hydrophobic ZnO thin films prepared by dc magnetron sputtering at room temperature. J. Appl. Phys. 122, 1431051–14310511 (2017).CrossRef G. Malik, J. Jaiswal, S. Mourya, and R. Chandra, Optical and other physical properties of hydrophobic ZnO thin films prepared by dc magnetron sputtering at room temperature. J. Appl. Phys. 122, 1431051–14310511 (2017).CrossRef
30.
Zurück zum Zitat S.K. Mourya, G. Malik, B. Kumar, and R. Chandra, The role of non-homogeneous barrier on the electrical performance of 15R-SiC Schottky diodes grown by in-situ RF sputtering. Mater. Sci. Semicond. Process. 149, 106855 (2022).CrossRef S.K. Mourya, G. Malik, B. Kumar, and R. Chandra, The role of non-homogeneous barrier on the electrical performance of 15R-SiC Schottky diodes grown by in-situ RF sputtering. Mater. Sci. Semicond. Process. 149, 106855 (2022).CrossRef
31.
Zurück zum Zitat S. Mourya, A. Kumar, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, Development of Pd-Pt functionalized high performance H2 gas sensor based on silicon carbide coated porous silicon for extreme environment applications. Sens. Actuator B Chem. 283, 373–383 (2019).CrossRef S. Mourya, A. Kumar, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, Development of Pd-Pt functionalized high performance H2 gas sensor based on silicon carbide coated porous silicon for extreme environment applications. Sens. Actuator B Chem. 283, 373–383 (2019).CrossRef
32.
Zurück zum Zitat J. Jaiswal, S. Mourya, G. Malik, and R. Chandra, Hydrogenation and dehydrogenation of hydrophobic Pd capped vertically aligned porous Ti nanoflake thin film. JOM 70, 2179–2184 (2018).CrossRef J. Jaiswal, S. Mourya, G. Malik, and R. Chandra, Hydrogenation and dehydrogenation of hydrophobic Pd capped vertically aligned porous Ti nanoflake thin film. JOM 70, 2179–2184 (2018).CrossRef
33.
Zurück zum Zitat J. Jaiswal, S. Mourya, G. Malik, and R. Chandra, Ellipsometric investigation of room temperature grown highly oriented anatase TiO2 thin films. J. Electron. Mater. 48, 1223–1234 (2019).CrossRef J. Jaiswal, S. Mourya, G. Malik, and R. Chandra, Ellipsometric investigation of room temperature grown highly oriented anatase TiO2 thin films. J. Electron. Mater. 48, 1223–1234 (2019).CrossRef
34.
Zurück zum Zitat S. Vyas, P. Giri, S. Singh, and P. Chakrabarti, Comparative study of As-deposited ZnO thin films by thermal evaporation, pulsed laser deposition and RF sputtering methods for electronic and optoelectronic applications. J. Electron. Mater. 44, 3401–3407 (2015).CrossRef S. Vyas, P. Giri, S. Singh, and P. Chakrabarti, Comparative study of As-deposited ZnO thin films by thermal evaporation, pulsed laser deposition and RF sputtering methods for electronic and optoelectronic applications. J. Electron. Mater. 44, 3401–3407 (2015).CrossRef
35.
Zurück zum Zitat A.L. Patterson, The scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978–982 (1939).CrossRef A.L. Patterson, The scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978–982 (1939).CrossRef
36.
Zurück zum Zitat G.F. Cai, J.P. Tu, D. Zhou, X.L. Wang, and C.D. Gu, Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol. Energy Mater. Sol. C 124, 103–110 (2014).CrossRef G.F. Cai, J.P. Tu, D. Zhou, X.L. Wang, and C.D. Gu, Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol. Energy Mater. Sol. C 124, 103–110 (2014).CrossRef
37.
Zurück zum Zitat S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Solar Energ. Mater. Solar Cells 92, 245–258 (2008).CrossRef S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Solar Energ. Mater. Solar Cells 92, 245–258 (2008).CrossRef
38.
Zurück zum Zitat C.G. Granqvist, Solar energy materials. Adv. Mater. 15, 1789–1803 (2003).CrossRef C.G. Granqvist, Solar energy materials. Adv. Mater. 15, 1789–1803 (2003).CrossRef
39.
Zurück zum Zitat C.G. Granqvist, S. Green, G.A. Niklasson, N.R. Mlyuka, S. von Kraemer, and P. Georen, Advances in chromogenic materials and devices. Thin Solid Films 518, 3046–3053 (2010).CrossRef C.G. Granqvist, S. Green, G.A. Niklasson, N.R. Mlyuka, S. von Kraemer, and P. Georen, Advances in chromogenic materials and devices. Thin Solid Films 518, 3046–3053 (2010).CrossRef
40.
Zurück zum Zitat S.S. Latthe, C. Terashima, K. Nakata, and A. Fujishima, Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 19, 4256 (2014).CrossRef S.S. Latthe, C. Terashima, K. Nakata, and A. Fujishima, Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 19, 4256 (2014).CrossRef
41.
Zurück zum Zitat Q. Zheng and C. Lu, Size effects of surface roughness to superhydrophobicity. Proc. IUTAM 10, 462 (2014).CrossRef Q. Zheng and C. Lu, Size effects of surface roughness to superhydrophobicity. Proc. IUTAM 10, 462 (2014).CrossRef
42.
Zurück zum Zitat S. Maurya, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates. J. Appl. Phys. 123, 023109 (2018).CrossRef S. Maurya, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates. J. Appl. Phys. 123, 023109 (2018).CrossRef
43.
Zurück zum Zitat D.K. Owens and R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741 (1969).CrossRef D.K. Owens and R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741 (1969).CrossRef
44.
Zurück zum Zitat S. Wu, Calculation of interfacial tension in polymer systems. J. Polym. Sci. Part C Polym. Symp. 34, 19 (1971).CrossRef S. Wu, Calculation of interfacial tension in polymer systems. J. Polym. Sci. Part C Polym. Symp. 34, 19 (1971).CrossRef
45.
Zurück zum Zitat J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of x-ray photoelectron spectroscopy (Japan: ULVAC-PHI, Inc., 1995). J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of x-ray photoelectron spectroscopy (Japan: ULVAC-PHI, Inc., 1995).
46.
Zurück zum Zitat S. Mourya, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, The role of the substrate on photophysical properties of highly ordered 15R-SiC thin films. J. Electron. Mater. 47, 5259–5268 (2018).CrossRef S. Mourya, J. Jaiswal, G. Malik, B. Kumar, and R. Chandra, The role of the substrate on photophysical properties of highly ordered 15R-SiC thin films. J. Electron. Mater. 47, 5259–5268 (2018).CrossRef
47.
Zurück zum Zitat G. Malik, S. Mourya, J. Jaiswal, and R. Chandra, Effect of annealing parameters on optoelectronic properties of highly ordered ZnO thin films. Mater. Sci. Semicond. Proc. 100, 200–213 (2019).CrossRef G. Malik, S. Mourya, J. Jaiswal, and R. Chandra, Effect of annealing parameters on optoelectronic properties of highly ordered ZnO thin films. Mater. Sci. Semicond. Proc. 100, 200–213 (2019).CrossRef
48.
Zurück zum Zitat A. Janotti and C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 1265011–1265029 (2009).CrossRef A. Janotti and C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 1265011–1265029 (2009).CrossRef
49.
Zurück zum Zitat J.C. Chou, C.J. Yang, Y.H. Liao, P.A. Ho, H.T. Chou, and C.H. Huang, The investigation of ZnO nanowires/ITO/glasssubstrate on electrochromic properties for PMeT thin film. J. Disp. Technol. 11, 430–437 (2015).CrossRef J.C. Chou, C.J. Yang, Y.H. Liao, P.A. Ho, H.T. Chou, and C.H. Huang, The investigation of ZnO nanowires/ITO/glasssubstrate on electrochromic properties for PMeT thin film. J. Disp. Technol. 11, 430–437 (2015).CrossRef
50.
Zurück zum Zitat F. Ding, Z. Fu, and Q. Qin, Electrochromic properties of ZnO thin Films prepared by pulsed laser deposition. Electrochem. Solid State Lett. 2, 418–419 (1999).CrossRef F. Ding, Z. Fu, and Q. Qin, Electrochromic properties of ZnO thin Films prepared by pulsed laser deposition. Electrochem. Solid State Lett. 2, 418–419 (1999).CrossRef
51.
Zurück zum Zitat T. Pauporte, F. Bedioui, and D. Lincot, Nanostructured zinc oxide–chromophore hybrid films with multicolored electrochromic properties. J. Mater. Chem. 15, 1552–1559 (2005).CrossRef T. Pauporte, F. Bedioui, and D. Lincot, Nanostructured zinc oxide–chromophore hybrid films with multicolored electrochromic properties. J. Mater. Chem. 15, 1552–1559 (2005).CrossRef
52.
Zurück zum Zitat Y. Han, W. Jiang, J. Jiang, J. Zhou, and Y. Ding, Enhanced electrochemical properties of N-doped carbon nanofibers by Co9S8 nanoparticles derived from ZIF-67. J. Electron. Mater. 51(6), 2909–2917 (2022).CrossRef Y. Han, W. Jiang, J. Jiang, J. Zhou, and Y. Ding, Enhanced electrochemical properties of N-doped carbon nanofibers by Co9S8 nanoparticles derived from ZIF-67. J. Electron. Mater. 51(6), 2909–2917 (2022).CrossRef
53.
Zurück zum Zitat X. Kang, J. Wang, Y. Ma, X. Shi, X. Chen, H. Tian, and F. Ran, 3D Juniperus sabina-like Ni/Co metal-organic framework as an enhanced electrode material for supercapacitors. J. Solid State Chem. 310, 123056 (2022).CrossRef X. Kang, J. Wang, Y. Ma, X. Shi, X. Chen, H. Tian, and F. Ran, 3D Juniperus sabina-like Ni/Co metal-organic framework as an enhanced electrode material for supercapacitors. J. Solid State Chem. 310, 123056 (2022).CrossRef
54.
Zurück zum Zitat K.K. Purushothaman, V.S. Priya, S. Nagamuthu, S. Vijayakumar, and G. Muralidharan, Synthesising of ZnO nanopetals for supercapacitor applications. Micro Nano Lett. 6, 668–670 (2011).CrossRef K.K. Purushothaman, V.S. Priya, S. Nagamuthu, S. Vijayakumar, and G. Muralidharan, Synthesising of ZnO nanopetals for supercapacitor applications. Micro Nano Lett. 6, 668–670 (2011).CrossRef
55.
Zurück zum Zitat D. Ge, Y. Wang, Z. Hu, A.A. Babangida, and L. Zhang, Porous silicon composite ZnO nanoparticles as supercapacitor electrodes. J. Electron. Mater. 51, 2964–2970 (2022).CrossRef D. Ge, Y. Wang, Z. Hu, A.A. Babangida, and L. Zhang, Porous silicon composite ZnO nanoparticles as supercapacitor electrodes. J. Electron. Mater. 51, 2964–2970 (2022).CrossRef
Metadaten
Titel
Sputter-Deposited Nano-porous ZnO Electrode for Highly Efficient Optoelectronic and Solid-State Energy Storage Devices
verfasst von
Gaurav Malik
Satyendra Kumar Mourya
Ananya Garg
Priyanka
Ramesh Chandra
Publikationsdatum
16.03.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10294-0

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe