Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

13.04.2023 | Original Research Article

Light-Dependent A.C. Transport Properties of Zinc Oxide (ZnO)/Reduced Graphene Oxide (rGO) Heterostructure Device: A Signature of Electrical Memory

verfasst von: Priyanka Banerjee, K. Mukhopadhyay, Apurba Pal, P. Dey

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report the light-dependent AC transport properties of an ITO/ZnO/rGO/Au heterostructure from impedance spectroscopy measurements carried out at room temperature in the frequency range of 20 Hz to 50 MHz under dark light, white light, and red laser light with variable intensities. It has been observed that impedance is decreased with an increase in illuminating light intensities. The equivalent circuits have been considered for fitting the experimental ac responses that permit the isolation of exact resistance–capacitance (RC) contributions which can be attributed to the interface region. The diameter of the semicircles in Nyquist plots were found to decrease with the increase in illuminated light intensities, indicating transfer of charge carriers at the ITO/ZnO and ZnO/rGO interfaces. Here, interface resistances and capacitances were found to decrease and increase, respectively, with increases in incident light intensities. I–V measurements of our device have been performed under dark and red laser illumination condition. From the I–V measurements of our device, a photocurrent has been found to be directly proportional to the incident photon energy, and resistive switching behavior was also prominent at a high biasing voltage under illuminated conditions. We have also shown that electrical hysteresis in our device depends on the biasing voltage along with the incident light intensity. We believe such observations of our fabricated device seem to be promising for light energy-dependent photodetectors for multipurpose use.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Zhan, L. Zheng, Y. Pan, G. Sun, and L. Li, Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO (rGO–ZnO) hybrid nanostructure. J. Matter. Chem. 22, 2589–2595 (2012).CrossRef Z. Zhan, L. Zheng, Y. Pan, G. Sun, and L. Li, Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO (rGO–ZnO) hybrid nanostructure. J. Matter. Chem. 22, 2589–2595 (2012).CrossRef
2.
Zurück zum Zitat S. Sahu and A.J. Pal, Organic photodetectors based on phthalocyanine and fullerenes: dielectric properties. J. Nanosci. Nanotechnol. 9, 450–454 (2009).CrossRef S. Sahu and A.J. Pal, Organic photodetectors based on phthalocyanine and fullerenes: dielectric properties. J. Nanosci. Nanotechnol. 9, 450–454 (2009).CrossRef
3.
Zurück zum Zitat M.J. Lee, S. Han, S.H. Jeon, B.H. Park, B.S. Kang, S.E. Ahn, K.H. Kim, C.B. Lee, C.J. Kim, I.K. Yoo, D.H. Seo, X.S. Li, J.B. Park, J.H. Lee, and Y. Park, Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476–1481 (2009).CrossRef M.J. Lee, S. Han, S.H. Jeon, B.H. Park, B.S. Kang, S.E. Ahn, K.H. Kim, C.B. Lee, C.J. Kim, I.K. Yoo, D.H. Seo, X.S. Li, J.B. Park, J.H. Lee, and Y. Park, Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476–1481 (2009).CrossRef
4.
Zurück zum Zitat J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302–263303 (2008).CrossRef J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302–263303 (2008).CrossRef
5.
Zurück zum Zitat Z. Zhou, F. Xiu, T. Jiang, J. Xu, J. Chen, J. Liu, and W. Huang, Solution-processable zinc oxide nanorods and a reduced graphene oxide hybrid nanostructure for highly flexible and stable memristor. J. Mater. Chem. C 7, 10764–10768 (2019).CrossRef Z. Zhou, F. Xiu, T. Jiang, J. Xu, J. Chen, J. Liu, and W. Huang, Solution-processable zinc oxide nanorods and a reduced graphene oxide hybrid nanostructure for highly flexible and stable memristor. J. Mater. Chem. C 7, 10764–10768 (2019).CrossRef
6.
Zurück zum Zitat X. Wang, Y. Yin, M. Song, H. Zhang, Z. Liu, Y. Wu, Y. Chen, M. Eginligil, S. Zhang, J. Liu, and W. Huang, Solution-processable 2D polymer/graphene oxide heterostructure for intrinsic low-current memory device. ACS Appl. Mater. Interfaces 12, 51729–51735 (2020).CrossRef X. Wang, Y. Yin, M. Song, H. Zhang, Z. Liu, Y. Wu, Y. Chen, M. Eginligil, S. Zhang, J. Liu, and W. Huang, Solution-processable 2D polymer/graphene oxide heterostructure for intrinsic low-current memory device. ACS Appl. Mater. Interfaces 12, 51729–51735 (2020).CrossRef
7.
Zurück zum Zitat C. Ban, Z. Zhang, C. Song, H. Zhang, X. Luo, X. Wang, J. Liu, and Z. Liu, Robust organic–inorganic heterosynapses with high PPF and broad photoperception. Adv. Mater. Tech., 2200870 (2022). C. Ban, Z. Zhang, C. Song, H. Zhang, X. Luo, X. Wang, J. Liu, and Z. Liu, Robust organic–inorganic heterosynapses with high PPF and broad photoperception. Adv. Mater. Tech., 2200870 (2022).
8.
Zurück zum Zitat B.J. Leever, C.A. Bailey, T.J. Marks, M.C. Hersam, and M.F. Durstock, In situ characterization of lifetime and morphology in operating bulk heterojunction organic photovoltaic devices by impedance spectroscopy. Adv. Energy Mater. 2, 120–128 (2012).CrossRef B.J. Leever, C.A. Bailey, T.J. Marks, M.C. Hersam, and M.F. Durstock, In situ characterization of lifetime and morphology in operating bulk heterojunction organic photovoltaic devices by impedance spectroscopy. Adv. Energy Mater. 2, 120–128 (2012).CrossRef
9.
Zurück zum Zitat I.B. Olenych, O.I. Aksimentyeva, L.S. Monastyrskii, Y.Y. Horcbenko, and M.V. Partyka, Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures. Nanoscale Res. Lett. 12, 272 (2017).CrossRef I.B. Olenych, O.I. Aksimentyeva, L.S. Monastyrskii, Y.Y. Horcbenko, and M.V. Partyka, Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures. Nanoscale Res. Lett. 12, 272 (2017).CrossRef
10.
Zurück zum Zitat H. Rahmouni, M. Smari, C. Boutheina, E. Dhahri, and K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5–xAgx MnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457–10466 (2015).CrossRef H. Rahmouni, M. Smari, C. Boutheina, E. Dhahri, and K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5–xAgx MnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457–10466 (2015).CrossRef
11.
Zurück zum Zitat Q. Zhu, C. Xie, H. Li, and Q. Yang, Comparative study of ZnO nanorod array and nanoparticle film in photoelectric response and charge storage. J. Alloys Comp. 585, 267–276 (2014).CrossRef Q. Zhu, C. Xie, H. Li, and Q. Yang, Comparative study of ZnO nanorod array and nanoparticle film in photoelectric response and charge storage. J. Alloys Comp. 585, 267–276 (2014).CrossRef
12.
Zurück zum Zitat J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S. Suthanthiraraj, R. Jayavel, and N. Damodaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J. Inorg. Organomet. Polym Mater. 28, 2046–2055 (2018).CrossRef J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S. Suthanthiraraj, R. Jayavel, and N. Damodaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J. Inorg. Organomet. Polym Mater. 28, 2046–2055 (2018).CrossRef
13.
Zurück zum Zitat J. Gurusamy, S.K.J. Pradhan, P. Magudapathy, and B. Panigrahi, Facile synthesis and enhanced luminescence behavior of ZnO:reduced graphene oxide (rGO) hybrid nanostructures. J. Luminesc. 203, 1–6 (2018).CrossRef J. Gurusamy, S.K.J. Pradhan, P. Magudapathy, and B. Panigrahi, Facile synthesis and enhanced luminescence behavior of ZnO:reduced graphene oxide (rGO) hybrid nanostructures. J. Luminesc. 203, 1–6 (2018).CrossRef
14.
Zurück zum Zitat J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).CrossRef J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).CrossRef
15.
Zurück zum Zitat A.L. Patterson, The scherrer formula for x-ray particle size determination. Phys. Rev. B 56, 978–982 (1939).CrossRef A.L. Patterson, The scherrer formula for x-ray particle size determination. Phys. Rev. B 56, 978–982 (1939).CrossRef
16.
Zurück zum Zitat D. Nath, S.K. Mandal, D. Deb, J.K. Rakshit, P. Dey, and J.N. Roy, Light tuning DC and AC electrical properties of ZnO-rGO based hybrid nanocomposite film. J. Appl. Phys. 123, 095115–095122 (2018).CrossRef D. Nath, S.K. Mandal, D. Deb, J.K. Rakshit, P. Dey, and J.N. Roy, Light tuning DC and AC electrical properties of ZnO-rGO based hybrid nanocomposite film. J. Appl. Phys. 123, 095115–095122 (2018).CrossRef
18.
Zurück zum Zitat A. Prakash and D. Bahadur, The role of ionic electrolytes on capacitive performance of ZnO-reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl. Mater. Interfaces 6, 1394–1405 (2014).CrossRef A. Prakash and D. Bahadur, The role of ionic electrolytes on capacitive performance of ZnO-reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl. Mater. Interfaces 6, 1394–1405 (2014).CrossRef
19.
Zurück zum Zitat S. Safa, R. Sarraf-Mamoory, and R. Azimirad, Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film. Physica E 57, 155–160 (2014).CrossRef S. Safa, R. Sarraf-Mamoory, and R. Azimirad, Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film. Physica E 57, 155–160 (2014).CrossRef
20.
Zurück zum Zitat Y. Jin, B. Song, Z. Jia, Y. Zhang, C. Lin, X. Wang, and S. Dai, Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films. Opt. Express 25, 440–451 (2017).CrossRef Y. Jin, B. Song, Z. Jia, Y. Zhang, C. Lin, X. Wang, and S. Dai, Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films. Opt. Express 25, 440–451 (2017).CrossRef
21.
Zurück zum Zitat D. Dorranian, L. Dejam, and G. Mosayebian, Optical characterization of Cu3N thin film with Swanepoel method. J. Theo. Appl. Phys. 6, 13 (2012).CrossRef D. Dorranian, L. Dejam, and G. Mosayebian, Optical characterization of Cu3N thin film with Swanepoel method. J. Theo. Appl. Phys. 6, 13 (2012).CrossRef
22.
Zurück zum Zitat J.H. Lee, H. Chou, G.H. Wen, and G.H. Hwang, Complex impedance spectroscopy of manganese oxide thin films. J. Appl. Phys. 107, 023907–023910 (2010).CrossRef J.H. Lee, H. Chou, G.H. Wen, and G.H. Hwang, Complex impedance spectroscopy of manganese oxide thin films. J. Appl. Phys. 107, 023907–023910 (2010).CrossRef
23.
Zurück zum Zitat C.L. Lin, W.Y. Chang, Y.L. Huang, P.C. Juan, T.W. Wang, K.Y. Hung, C.Y. Hsieh, T.K. Kang, and J.B. Shi, Resistance switching behavior of ZnO resistive random access memory with a reduced graphene oxide capping layer. Japanese J. Appl. Phys. 54, 04DJ08-6 (2015).CrossRef C.L. Lin, W.Y. Chang, Y.L. Huang, P.C. Juan, T.W. Wang, K.Y. Hung, C.Y. Hsieh, T.K. Kang, and J.B. Shi, Resistance switching behavior of ZnO resistive random access memory with a reduced graphene oxide capping layer. Japanese J. Appl. Phys. 54, 04DJ08-6 (2015).CrossRef
24.
Zurück zum Zitat H. Liu, Q. Sun, J. Xing, Z. Zheng, Z. Zhang, Z. Lü, and K. Zhao, Fast and enhanced broadband photoresponse of a ZnO nanowire array/reduced graphene oxide film hybrid photodetector from the visible to the near-infrared range. ACS Appl. Mater. Interfaces 7, 6645–6651 (2015).CrossRef H. Liu, Q. Sun, J. Xing, Z. Zheng, Z. Zhang, Z. Lü, and K. Zhao, Fast and enhanced broadband photoresponse of a ZnO nanowire array/reduced graphene oxide film hybrid photodetector from the visible to the near-infrared range. ACS Appl. Mater. Interfaces 7, 6645–6651 (2015).CrossRef
25.
Zurück zum Zitat M. Xiao, K.P. Musselman, W.W. Duley, and N.Y. Zhou, Resistive switching memory of TiO2 nanowire networks grown on Ti Foil by a single hydrothermal method. Nano-Micro Lett. 9, 1–9 (2017).CrossRef M. Xiao, K.P. Musselman, W.W. Duley, and N.Y. Zhou, Resistive switching memory of TiO2 nanowire networks grown on Ti Foil by a single hydrothermal method. Nano-Micro Lett. 9, 1–9 (2017).CrossRef
26.
Zurück zum Zitat A. Jilani, M.H.D. Othman, M.O. Ansari, R. Kumarm, A. Alshahrie, A.F. Ismai, I.U. Khan, V.K. Sajith, and M.A. Barakat, Facile spectroscopic approach to obtain the optoelectronic properties of few-layered graphene oxide thin films and their role in photocatalysis. New J. Chem. 41, 14217–14227 (2017).CrossRef A. Jilani, M.H.D. Othman, M.O. Ansari, R. Kumarm, A. Alshahrie, A.F. Ismai, I.U. Khan, V.K. Sajith, and M.A. Barakat, Facile spectroscopic approach to obtain the optoelectronic properties of few-layered graphene oxide thin films and their role in photocatalysis. New J. Chem. 41, 14217–14227 (2017).CrossRef
27.
Zurück zum Zitat A.M. Bazargan, F. Sharif, S. Mazinani, and N. Naderi, Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction. J. Mater. Sci.: Mater. Electron. 28, 1419–1427 (2017). A.M. Bazargan, F. Sharif, S. Mazinani, and N. Naderi, Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction. J. Mater. Sci.: Mater. Electron. 28, 1419–1427 (2017).
28.
Zurück zum Zitat H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002).CrossRef H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002).CrossRef
29.
Zurück zum Zitat G.M. Khanal, G.C. Cardarilli, A. Chakraborty, S. Acciarito, M.Y. Mulla, L. Di Nunzio, R. Fazzolari, and M. Re, IEEE International Conference on Semiconductor Electronics (ICSE) (2016). G.M. Khanal, G.C. Cardarilli, A. Chakraborty, S. Acciarito, M.Y. Mulla, L. Di Nunzio, R. Fazzolari, and M. Re, IEEE International Conference on Semiconductor Electronics (ICSE) (2016).
30.
Zurück zum Zitat C. Wu, T.W. Kim, T. Guo, and F. Li, Unique visible-light-assisted field emission of tetrapod-shaped ZnO/reduced graphene-oxide core/coating nanocomposites. Sci. Rep. 6, 38613–38622 (2016).CrossRef C. Wu, T.W. Kim, T. Guo, and F. Li, Unique visible-light-assisted field emission of tetrapod-shaped ZnO/reduced graphene-oxide core/coating nanocomposites. Sci. Rep. 6, 38613–38622 (2016).CrossRef
31.
Zurück zum Zitat F.A.L. Sanchez, A.S. Takimi, F.S. Rodembusch, and C.P. Bergmann, Photocatalytic activity of nanoneedles, nanospheres, and polyhedral shaped ZnO powders in organic dye degradation processes. J. Alloys Comp. 572, 68–73 (2013).CrossRef F.A.L. Sanchez, A.S. Takimi, F.S. Rodembusch, and C.P. Bergmann, Photocatalytic activity of nanoneedles, nanospheres, and polyhedral shaped ZnO powders in organic dye degradation processes. J. Alloys Comp. 572, 68–73 (2013).CrossRef
32.
Zurück zum Zitat M. Barra, A. Cassinese, P. D’Angelo, L.E. Hueso, P. Graziosi, and V. Dediu, Manganite/Alq3 interfaces investigated by impedance spectroscopy technique. Org. Electron. 9, 911–915 (2008).CrossRef M. Barra, A. Cassinese, P. D’Angelo, L.E. Hueso, P. Graziosi, and V. Dediu, Manganite/Alq3 interfaces investigated by impedance spectroscopy technique. Org. Electron. 9, 911–915 (2008).CrossRef
33.
Zurück zum Zitat R. Debnath, P. Dey, S. Singh, J.N. Roy, S.K. Mandal, and T.K. Nath, Magnetically tunable alternating current electrical properties of x La0.7Sr0.3MnO3–(1–x) ErMnO3 (x = 0.1, 0.3, and 0.5) multiferroic nanocomposite. J. Appl. Phys. 118, 044104–044111 (2015).CrossRef R. Debnath, P. Dey, S. Singh, J.N. Roy, S.K. Mandal, and T.K. Nath, Magnetically tunable alternating current electrical properties of x La0.7Sr0.3MnO3–(1–x) ErMnO3 (x = 0.1, 0.3, and 0.5) multiferroic nanocomposite. J. Appl. Phys. 118, 044104–044111 (2015).CrossRef
34.
Zurück zum Zitat J.S. Lee, K.H. You, and C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012).CrossRef J.S. Lee, K.H. You, and C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012).CrossRef
35.
Zurück zum Zitat C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012).CrossRef C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012).CrossRef
36.
Zurück zum Zitat A. Bera, and B. Saha, Dispersion in impedance spectra of isotype CdO–ZnO thin film heterostructure on applied dc bias. Surf. Rev. Lett. 23, 1650062 (2016).CrossRef A. Bera, and B. Saha, Dispersion in impedance spectra of isotype CdO–ZnO thin film heterostructure on applied dc bias. Surf. Rev. Lett. 23, 1650062 (2016).CrossRef
37.
Zurück zum Zitat B. Chitara, L.S. Panchakarla, S.B. Krupanidhi, and C.N.R. Rao, Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 23, 5419–5424 (2011).CrossRef B. Chitara, L.S. Panchakarla, S.B. Krupanidhi, and C.N.R. Rao, Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 23, 5419–5424 (2011).CrossRef
38.
Zurück zum Zitat D. Shao, M.H. Yu Sun, T. Hu, J. Lian, and S. Sawyer, High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle–graphene core–shell structures. Nanoscale 5, 3664–3667 (2013).CrossRef D. Shao, M.H. Yu Sun, T. Hu, J. Lian, and S. Sawyer, High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle–graphene core–shell structures. Nanoscale 5, 3664–3667 (2013).CrossRef
39.
Zurück zum Zitat B. Nie, J.G. Hu, L.B. Luo, C. Xie, L.H. Zeng, P. Lv, F.Z. Li, J.S. Jie, M. Feng, C.Y. Wu, Y.Q. Yu, and S.H. Yu, Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 9, 2872–2879 (2013).CrossRef B. Nie, J.G. Hu, L.B. Luo, C. Xie, L.H. Zeng, P. Lv, F.Z. Li, J.S. Jie, M. Feng, C.Y. Wu, Y.Q. Yu, and S.H. Yu, Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 9, 2872–2879 (2013).CrossRef
40.
Zurück zum Zitat X.W. Fu, Z.M. Liao, Y.B. Zhou, H.C. Wu, Y.Q. Bie, J. Xu, and D.P. Yu, Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl. Phys. Lett. 100, 223114–223117 (2012).CrossRef X.W. Fu, Z.M. Liao, Y.B. Zhou, H.C. Wu, Y.Q. Bie, J. Xu, and D.P. Yu, Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl. Phys. Lett. 100, 223114–223117 (2012).CrossRef
41.
Zurück zum Zitat M.K. Kavitha, P. Gopinath, and H. John, Reduced graphene oxide–ZnO self-assembled films: tailoring the visible light photoconductivity by the intrinsic defect states in ZnO. Phys. Chem. Chem. Phys. 17, 14647–14655 (2015).CrossRef M.K. Kavitha, P. Gopinath, and H. John, Reduced graphene oxide–ZnO self-assembled films: tailoring the visible light photoconductivity by the intrinsic defect states in ZnO. Phys. Chem. Chem. Phys. 17, 14647–14655 (2015).CrossRef
42.
Zurück zum Zitat S.K. Mandal, S. Singh, R. Debnath, A. Nath, and P. Dey, Magnetoelectric coupling, dielectric and electrical properties of xLa0.7Sr0.3MnO3 – (1–x) Pb (Zr0.58Ti0.42)O3 (x = 0.05 and 0.1) multiferroic nanocomposites. J. Alloys Comp. 720, 550–561 (2017).CrossRef S.K. Mandal, S. Singh, R. Debnath, A. Nath, and P. Dey, Magnetoelectric coupling, dielectric and electrical properties of xLa0.7Sr0.3MnO3 – (1–x) Pb (Zr0.58Ti0.42)O3 (x = 0.05 and 0.1) multiferroic nanocomposites. J. Alloys Comp. 720, 550–561 (2017).CrossRef
43.
Zurück zum Zitat R. Debnath, S.K. Mandal, A. Nath, and P. Dey, Room-temperature magnetoelectric coupling, dielectric and impedance studies of 0.5Zn0.3Ni0.7Fe2O4–0.5HoMnO3 nanocomposite. Int. J. Mod. Phys. B 32, 1840060–1840064 (2018).CrossRef R. Debnath, S.K. Mandal, A. Nath, and P. Dey, Room-temperature magnetoelectric coupling, dielectric and impedance studies of 0.5Zn0.3Ni0.7Fe2O4–0.5HoMnO3 nanocomposite. Int. J. Mod. Phys. B 32, 1840060–1840064 (2018).CrossRef
44.
Zurück zum Zitat L.K. Gil, E. Baca, O. Moran, C. Quinayas, and G. Bolanos, Electrical transport properties of sintered granular manganite/insulator systems. Solid State Commun. 145, 66–71 (2008).CrossRef L.K. Gil, E. Baca, O. Moran, C. Quinayas, and G. Bolanos, Electrical transport properties of sintered granular manganite/insulator systems. Solid State Commun. 145, 66–71 (2008).CrossRef
45.
Zurück zum Zitat P.R. Das, S. Behera, R. Padhee, P. Nayak, and R.N.P. Choudhary, Dielectric and electrical properties of Na2Pb2La2W2Ti4Ta4O30 electroceramics. J. Adv. Ceram. 1, 232–240 (2012).CrossRef P.R. Das, S. Behera, R. Padhee, P. Nayak, and R.N.P. Choudhary, Dielectric and electrical properties of Na2Pb2La2W2Ti4Ta4O30 electroceramics. J. Adv. Ceram. 1, 232–240 (2012).CrossRef
46.
Zurück zum Zitat T.M. Brenner, D.A. Egger, A.M. Rappe, L. Kronik, G. Hodes, and D. Cahen, Are mobilities in hybrid organic-inorganic halide perovskites actually “high”? J. Phys. Chem. Lett. 6, 4754–4757 (2015).CrossRef T.M. Brenner, D.A. Egger, A.M. Rappe, L. Kronik, G. Hodes, and D. Cahen, Are mobilities in hybrid organic-inorganic halide perovskites actually “high”? J. Phys. Chem. Lett. 6, 4754–4757 (2015).CrossRef
47.
Zurück zum Zitat B.P. Falcão, J.P. Leitão, M.R. Correia, M.R. Soares, H. Wiggers, A. Cantarero, and R.N. Pereira, Light-induced nonthermal population of optical phonons in nanocrystals. Phys. Rev. B 95, 115439 (2017).CrossRef B.P. Falcão, J.P. Leitão, M.R. Correia, M.R. Soares, H. Wiggers, A. Cantarero, and R.N. Pereira, Light-induced nonthermal population of optical phonons in nanocrystals. Phys. Rev. B 95, 115439 (2017).CrossRef
48.
Zurück zum Zitat J. Zhang, P. Liu, Y. Zhang, G. Xu, Z. Lu, X. Wang, Y. Wang, L. Yang, X. Tao, H. Wang, E. Zhang, J. Xi, and Z. Ji, Enhanced performance of nano-Bi2WO6-graphene as pseudocapacitor electrodes by charge transfer channel. Sci. Rep. 5, 8624 (2015).CrossRef J. Zhang, P. Liu, Y. Zhang, G. Xu, Z. Lu, X. Wang, Y. Wang, L. Yang, X. Tao, H. Wang, E. Zhang, J. Xi, and Z. Ji, Enhanced performance of nano-Bi2WO6-graphene as pseudocapacitor electrodes by charge transfer channel. Sci. Rep. 5, 8624 (2015).CrossRef
49.
Zurück zum Zitat G. Memisoglu, and C. Varlikli, Highly efficient organic UV photodetectors based on polyfluorene and naphthalenediimide blends: effect of thermal annealing. Int. J. Photoenergy 936075, 11 (2012). G. Memisoglu, and C. Varlikli, Highly efficient organic UV photodetectors based on polyfluorene and naphthalenediimide blends: effect of thermal annealing. Int. J. Photoenergy 936075, 11 (2012).
Metadaten
Titel
Light-Dependent A.C. Transport Properties of Zinc Oxide (ZnO)/Reduced Graphene Oxide (rGO) Heterostructure Device: A Signature of Electrical Memory
verfasst von
Priyanka Banerjee
K. Mukhopadhyay
Apurba Pal
P. Dey
Publikationsdatum
13.04.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10405-x

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe