Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

13.04.2023 | Original Research Article

Multidimensional Hierarchical Hybrid Derived from Carbon-Based Microsphere-Supported Bimetallic Organic Frameworks Linked with Graphene Oxide for Efficient Oxygen Reduction Reaction

verfasst von: Yating Zhang, Pei He, Nana Zhang, Dongxian Zhuo, Xue Wang, Xiaobo Wang, Zhenghan Kong, Yanping Hu

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rational construction and preparation of efficient, stable, and economic electrocatalysts for the oxygen reduction reaction (ORR) are necessary for fuel cells. In this work, we fabricated a porous carbon skeleton structure consisting of bimetallic organic framework (BMMOF)-derived N-doped microspheres linked with graphene oxide (GO) conducting network (denoted as UA-Co/RSC@NGF, where “UA” stands for ultrasound-assisted, “RSC” stands for resin microspheres, and “NGF” stands for N-doped graphene framework) as an efficient ORR catalyst by an ultrasound-assisted and one-step pyrolysis method. In this configuration, benefiting from the support of carbon microspheres and the strong synergistic coupling with GO, the structure of UA-Co/RSC@NGF is stabilized, and the large specific surface area enhances the density of active sites. With UA-Co/RSC@NGF as the catalyst, significant ORR properties were achieved with a high half-wave potential (E1/2, 0.90 V), an onset potential (Eonset, 1.03 V), and a large limited current density (5.37 mA cm−2). The durability and methanol resistance of UA-Co/RSC@NGF in alkaline media outperform commercially available Pt/C. This study may open a pathway for rationally designing multidimensional composite-structured carbon-based ORR catalysts for energy-related applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Y.-J. Lin, J.-E. Tsai, C.-C. Huang, Y.-S. Chen, and Y.-Y. Li, Highly porous iron-doped nitrogen–carbon framework on reduced graphene oxide as an excellent oxygen reduction catalyst for proton-exchange membrane fuel cells. ACS Appl. Energy Mater. 5, 1822 (2022).CrossRef Y.-J. Lin, J.-E. Tsai, C.-C. Huang, Y.-S. Chen, and Y.-Y. Li, Highly porous iron-doped nitrogen–carbon framework on reduced graphene oxide as an excellent oxygen reduction catalyst for proton-exchange membrane fuel cells. ACS Appl. Energy Mater. 5, 1822 (2022).CrossRef
2.
Zurück zum Zitat V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, and N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57 (2017).CrossRef V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, and N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57 (2017).CrossRef
3.
Zurück zum Zitat Y. Zhang, N. Zhang, L. Shen, G. Lin, P. He, K. Suo, T. Zhang, X. Wang, and K. Li, Ascorbic acid-modified dual-metal–organic-framework derived C-Fe/Fe3O4 loaded on a N-doped graphene framework for enhanced electrocatalytic oxygen reduction. New J. Chem. 46, 15860 (2022).CrossRef Y. Zhang, N. Zhang, L. Shen, G. Lin, P. He, K. Suo, T. Zhang, X. Wang, and K. Li, Ascorbic acid-modified dual-metal–organic-framework derived C-Fe/Fe3O4 loaded on a N-doped graphene framework for enhanced electrocatalytic oxygen reduction. New J. Chem. 46, 15860 (2022).CrossRef
4.
Zurück zum Zitat J. Yan, X. Zheng, C. Wei, Z. Sun, K. Zeng, L. Shen, J. Sun, M.H. Rümmeli, and R. Yang, Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction. Carbon 171, 320 (2021).CrossRef J. Yan, X. Zheng, C. Wei, Z. Sun, K. Zeng, L. Shen, J. Sun, M.H. Rümmeli, and R. Yang, Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction. Carbon 171, 320 (2021).CrossRef
5.
Zurück zum Zitat Z. Guo, S. Liu, X. Hu, J. Song, K. Xu, Q. Ye, G. Xu, and Z. Deng, Core-shell structured metal organic framework materials derived cobalt/iron-nitrogen Co-doped carbon electrocatalysts for efficient oxygen reduction. Int. J. Hydrog. Energy 46, 9341 (2021).CrossRef Z. Guo, S. Liu, X. Hu, J. Song, K. Xu, Q. Ye, G. Xu, and Z. Deng, Core-shell structured metal organic framework materials derived cobalt/iron-nitrogen Co-doped carbon electrocatalysts for efficient oxygen reduction. Int. J. Hydrog. Energy 46, 9341 (2021).CrossRef
6.
Zurück zum Zitat C. Liu, F. Dong, Y. Wang, J. Guo, Y. Yang, Q. Gong, and J. Qiao, Mesoporous carbon based non-precious metal catalysts for oxygen reduction reaction: effect of metal species and valence state. Int. J. Hydrog. Energy 45, 29874 (2020).CrossRef C. Liu, F. Dong, Y. Wang, J. Guo, Y. Yang, Q. Gong, and J. Qiao, Mesoporous carbon based non-precious metal catalysts for oxygen reduction reaction: effect of metal species and valence state. Int. J. Hydrog. Energy 45, 29874 (2020).CrossRef
7.
Zurück zum Zitat X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, and X. Li, MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2, 14064 (2014).CrossRef X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, and X. Li, MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2, 14064 (2014).CrossRef
8.
Zurück zum Zitat V.A. Setyowati, H.-C. Huang, C.-C. Liu, and C.-H. Wang, Effect of iron precursors on the structure and oxygen reduction activity of iron-nitrogen–carbon catalysts. Electrochim. Acta 211, 933 (2016).CrossRef V.A. Setyowati, H.-C. Huang, C.-C. Liu, and C.-H. Wang, Effect of iron precursors on the structure and oxygen reduction activity of iron-nitrogen–carbon catalysts. Electrochim. Acta 211, 933 (2016).CrossRef
9.
Zurück zum Zitat G.-L. Li, C.-D. Liu, S.-M. Chen, C. Hao, G.-C. Cheng, and Y.-Y. Xie, Promotion of oxygen reduction performance by Fe3O4 nanoparticles support nitrogen-doped three dimensional meso/macroporous carbon based electrocatalyst. Int. J. Hydrog. Energy 42, 4133 (2017).CrossRef G.-L. Li, C.-D. Liu, S.-M. Chen, C. Hao, G.-C. Cheng, and Y.-Y. Xie, Promotion of oxygen reduction performance by Fe3O4 nanoparticles support nitrogen-doped three dimensional meso/macroporous carbon based electrocatalyst. Int. J. Hydrog. Energy 42, 4133 (2017).CrossRef
10.
Zurück zum Zitat Y. Li, H. Xu, H. Huang, L. Gao, and T. Ma, Effective oxygen reduction and evolution catalysts derived from metal organic frameworks by optimizing active sites. J. Electrochem. Soc. 165, F158 (2018).CrossRef Y. Li, H. Xu, H. Huang, L. Gao, and T. Ma, Effective oxygen reduction and evolution catalysts derived from metal organic frameworks by optimizing active sites. J. Electrochem. Soc. 165, F158 (2018).CrossRef
11.
Zurück zum Zitat Z. Chen, R. Liu, S. Liu, J. Huang, L. Chen, R. Nadimicherla, D. Wu, and R. Fu, FeS/FeNC decorated N, S-co-doped porous carbon for enhanced ORR activity in alkaline media. Chem. Commun. (Camb) 56, 12921 (2020).CrossRef Z. Chen, R. Liu, S. Liu, J. Huang, L. Chen, R. Nadimicherla, D. Wu, and R. Fu, FeS/FeNC decorated N, S-co-doped porous carbon for enhanced ORR activity in alkaline media. Chem. Commun. (Camb) 56, 12921 (2020).CrossRef
12.
Zurück zum Zitat R. Hao, J.-T. Ren, X.-W. Lv, W. Li, Y.-P. Liu, and Z.-Y. Yuan, N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery. J. Energy Chem. 49, 14 (2020).CrossRef R. Hao, J.-T. Ren, X.-W. Lv, W. Li, Y.-P. Liu, and Z.-Y. Yuan, N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery. J. Energy Chem. 49, 14 (2020).CrossRef
13.
Zurück zum Zitat L. Gao, M. Xiao, Z. Jin, C. Liu, J. Zhu, J. Ge, and W. Xing, Correlating Fe source with Fe–N–C active site construction: Guidance for rational design of high-performance ORR catalyst. J. Energy Chem. 27, 1668 (2018).CrossRef L. Gao, M. Xiao, Z. Jin, C. Liu, J. Zhu, J. Ge, and W. Xing, Correlating Fe source with Fe–N–C active site construction: Guidance for rational design of high-performance ORR catalyst. J. Energy Chem. 27, 1668 (2018).CrossRef
14.
Zurück zum Zitat L. Lin, N. Miao, G.G. Wallace, J. Chen, and D.A. Allwood, Engineering carbon materials for electrochemical oxygen reduction reactions. Adv. Energy Mater. 11, 2100695 (2021).CrossRef L. Lin, N. Miao, G.G. Wallace, J. Chen, and D.A. Allwood, Engineering carbon materials for electrochemical oxygen reduction reactions. Adv. Energy Mater. 11, 2100695 (2021).CrossRef
15.
Zurück zum Zitat M.S. Faber and S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519 (2014).CrossRef M.S. Faber and S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519 (2014).CrossRef
16.
Zurück zum Zitat Q. Wang, L. Shang, R. Shi, X. Zhang, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, and T. Zhang, 3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries’ cathodes. Nano Energy 40, 382 (2017).CrossRef Q. Wang, L. Shang, R. Shi, X. Zhang, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, and T. Zhang, 3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries’ cathodes. Nano Energy 40, 382 (2017).CrossRef
17.
Zurück zum Zitat L. Li, J. He, Y. Wang, X. Lv, X. Gu, P. Dai, D. Liu, and X. Zhao, Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. J. Mater. Chem. A 7, 1964 (2019).CrossRef L. Li, J. He, Y. Wang, X. Lv, X. Gu, P. Dai, D. Liu, and X. Zhao, Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. J. Mater. Chem. A 7, 1964 (2019).CrossRef
18.
Zurück zum Zitat S. Zaman, L. Huang, A.I. Douka, H. Yang, B. You, and B.Y. Xia, Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed. 60, 17832 (2021).CrossRef S. Zaman, L. Huang, A.I. Douka, H. Yang, B. You, and B.Y. Xia, Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed. 60, 17832 (2021).CrossRef
19.
Zurück zum Zitat C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, and J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937 (2008).CrossRef C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, and J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937 (2008).CrossRef
20.
Zurück zum Zitat Z. Hu, Z. Guo, Z. Zhang, M. Dou, and F. Wang, Bimetal zeolitic imidazolite framework-derived iron-, cobalt- and nitrogen-codoped carbon nanopolyhedra electrocatalyst for efficient oxygen reduction. ACS Appl. Mater. Interfaces 10, 12651 (2018).CrossRef Z. Hu, Z. Guo, Z. Zhang, M. Dou, and F. Wang, Bimetal zeolitic imidazolite framework-derived iron-, cobalt- and nitrogen-codoped carbon nanopolyhedra electrocatalyst for efficient oxygen reduction. ACS Appl. Mater. Interfaces 10, 12651 (2018).CrossRef
21.
Zurück zum Zitat C. Zhu and S. Dong, Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5, 1753 (2013).CrossRef C. Zhu and S. Dong, Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5, 1753 (2013).CrossRef
22.
Zurück zum Zitat L.-H. Zhang, Y. Shi, Y. Wang, and N.R. Shiju, Nanocarbon catalysts: recent understanding regarding the active sites. Adv. Sci. 7, 1902126 (2020).CrossRef L.-H. Zhang, Y. Shi, Y. Wang, and N.R. Shiju, Nanocarbon catalysts: recent understanding regarding the active sites. Adv. Sci. 7, 1902126 (2020).CrossRef
23.
Zurück zum Zitat Y. Chen, Z. Shi, Z. Wang, C. Wang, J. Feng, B. Pang, Q. Sun, L. Yu, and L. Dong, Yolk-shell Fe@FeNx nanoparticles decorated N-doped mesoporous carbon as highly active electrocatalyst for oxygen reduction reactions. J. Alloys Compd. 829, 154558 (2020).CrossRef Y. Chen, Z. Shi, Z. Wang, C. Wang, J. Feng, B. Pang, Q. Sun, L. Yu, and L. Dong, Yolk-shell Fe@FeNx nanoparticles decorated N-doped mesoporous carbon as highly active electrocatalyst for oxygen reduction reactions. J. Alloys Compd. 829, 154558 (2020).CrossRef
24.
Zurück zum Zitat T. Wang, C. Sun, Y. Yan, and F. Li, Understanding the active sites of Fe–N–C materials and their properties in the ORR catalysis system. RSC Adv. 12, 9543 (2022).CrossRef T. Wang, C. Sun, Y. Yan, and F. Li, Understanding the active sites of Fe–N–C materials and their properties in the ORR catalysis system. RSC Adv. 12, 9543 (2022).CrossRef
25.
Zurück zum Zitat K. Li, Y. Zhang, P. Wang, X. Long, L. Zheng, G. Liu, X. He, and J. Qiu, Core-Shell ZIF-67@ZIF-8-derived multi-dimensional cobalt-nitrogen doped hierarchical carbon nanomaterial for efficient oxygen reduction reaction. J. Alloys Compd. 903, 163701 (2022).CrossRef K. Li, Y. Zhang, P. Wang, X. Long, L. Zheng, G. Liu, X. He, and J. Qiu, Core-Shell ZIF-67@ZIF-8-derived multi-dimensional cobalt-nitrogen doped hierarchical carbon nanomaterial for efficient oxygen reduction reaction. J. Alloys Compd. 903, 163701 (2022).CrossRef
26.
Zurück zum Zitat X.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo, X.-P. Han, X.-W. Du, S.-Z. Qiao, and J. Yang, Identifying the key role of pyridinic-N–Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 30, 1800005 (2018).CrossRef X.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo, X.-P. Han, X.-W. Du, S.-Z. Qiao, and J. Yang, Identifying the key role of pyridinic-N–Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 30, 1800005 (2018).CrossRef
27.
Zurück zum Zitat X. Hu, Y. Min, L.-L. Ma, J.-Y. Lu, H.-C. Li, W.-J. Liu, J.-J. Chen, and H.-Q. Yu, Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Appl. Catal. B 268, 118405 (2020).CrossRef X. Hu, Y. Min, L.-L. Ma, J.-Y. Lu, H.-C. Li, W.-J. Liu, J.-J. Chen, and H.-Q. Yu, Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Appl. Catal. B 268, 118405 (2020).CrossRef
28.
Zurück zum Zitat Z. Kang, L. Fan, and D. Sun, Recent advances and challenges of metal–organic framework membranes for gas separation. J. Mater. Chem. A 5, 10073 (2017).CrossRef Z. Kang, L. Fan, and D. Sun, Recent advances and challenges of metal–organic framework membranes for gas separation. J. Mater. Chem. A 5, 10073 (2017).CrossRef
29.
Zurück zum Zitat L. Yang, X. Zeng, W. Wang, and D. Cao, Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 28, 1704537 (2018).CrossRef L. Yang, X. Zeng, W. Wang, and D. Cao, Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 28, 1704537 (2018).CrossRef
30.
Zurück zum Zitat C. Li, D.-H. Zhao, H.-L. Long, and M. Li, Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 40, 2657 (2021).CrossRef C. Li, D.-H. Zhao, H.-L. Long, and M. Li, Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 40, 2657 (2021).CrossRef
31.
Zurück zum Zitat X. Lu, B. Xia, S.-Q. Zang, and X. Lou, Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59, 4634 (2020).CrossRef X. Lu, B. Xia, S.-Q. Zang, and X. Lou, Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59, 4634 (2020).CrossRef
32.
Zurück zum Zitat Q. Liang, Z. Chen, X. Chen, and Y. Li, A KCl-assisted pyrolysis strategy to fabricate nitrogen-doped carbon nanotube hollow polyhedra for efficient bifunctional oxygen electrocatalysts. J. Mater. Chem. A 7, 20310 (2019).CrossRef Q. Liang, Z. Chen, X. Chen, and Y. Li, A KCl-assisted pyrolysis strategy to fabricate nitrogen-doped carbon nanotube hollow polyhedra for efficient bifunctional oxygen electrocatalysts. J. Mater. Chem. A 7, 20310 (2019).CrossRef
33.
Zurück zum Zitat J. Zhao, X. Quan, S. Chen, Y. Liu, and H. Yu, Cobalt nanoparticles encapsulated in porous carbons derived from coreshell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction. ACS Appl. Mater. Interfaces 9, 28685 (2017).CrossRef J. Zhao, X. Quan, S. Chen, Y. Liu, and H. Yu, Cobalt nanoparticles encapsulated in porous carbons derived from coreshell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction. ACS Appl. Mater. Interfaces 9, 28685 (2017).CrossRef
34.
Zurück zum Zitat C. Shi, Y. Liu, R. Qi, J. Li, J. Zhu, R. Yu, S. Li, X. Hong, J. Wu, S. Xi, L. Zhou, and L. Mai, Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy 87, 106153 (2021).CrossRef C. Shi, Y. Liu, R. Qi, J. Li, J. Zhu, R. Yu, S. Li, X. Hong, J. Wu, S. Xi, L. Zhou, and L. Mai, Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy 87, 106153 (2021).CrossRef
35.
Zurück zum Zitat M. Zhang, M. Li, W. Wu, J. Chen, X. Ma, Z. Zhang, and S. Xiang, MOF/PAN nanofiber-derived N-doped porous carbon materials with excellent electrochemical activity for the simultaneous determination of catechol and hydroquinone. New J. Chem. 43, 3913 (2019).CrossRef M. Zhang, M. Li, W. Wu, J. Chen, X. Ma, Z. Zhang, and S. Xiang, MOF/PAN nanofiber-derived N-doped porous carbon materials with excellent electrochemical activity for the simultaneous determination of catechol and hydroquinone. New J. Chem. 43, 3913 (2019).CrossRef
36.
Zurück zum Zitat H. Wang, L. Wei, J. Liu, and J. Shen, Hollow N-doped bimetal carbon spheres with superior ORR catalytic performance for microbial fuel cells. J. Colloid Interface Sci. 575, 177 (2020).CrossRef H. Wang, L. Wei, J. Liu, and J. Shen, Hollow N-doped bimetal carbon spheres with superior ORR catalytic performance for microbial fuel cells. J. Colloid Interface Sci. 575, 177 (2020).CrossRef
37.
Zurück zum Zitat K. Irisa, K. Hatakeyama, S. Yoshimoto, M. Koinuma, and S. Ida, Oxygen reduction reaction activity of an iron phthalocyanine/graphene oxide nanocomposite. RSC Adv. 11, 15927 (2021).CrossRef K. Irisa, K. Hatakeyama, S. Yoshimoto, M. Koinuma, and S. Ida, Oxygen reduction reaction activity of an iron phthalocyanine/graphene oxide nanocomposite. RSC Adv. 11, 15927 (2021).CrossRef
38.
Zurück zum Zitat H. Gao, Y. Ma, Y. Li, Y. Cao, Z. Yin, H. Luo, J. Yan, and Y. Zhang, MOF-derived N-doped carbon coated Co/RGO composites with enhanced electrocatalytic activity for oxygen reduction reaction. Inorg. Chem. Commun. 123, 108330 (2021).CrossRef H. Gao, Y. Ma, Y. Li, Y. Cao, Z. Yin, H. Luo, J. Yan, and Y. Zhang, MOF-derived N-doped carbon coated Co/RGO composites with enhanced electrocatalytic activity for oxygen reduction reaction. Inorg. Chem. Commun. 123, 108330 (2021).CrossRef
39.
Zurück zum Zitat H. Fang, T. Huang, Y. Sun, B. Kang, D. Liang, S. Yao, J. Yu, M.M. Dinesh, S. Wu, J.Y. Lee, and S. Mao, Metal–organic framework-derived core-shell-structured nitrogen-doped CoCx/FeCo@C hybrid supported by reduced graphene oxide sheets as high performance bifunctional electrocatalysts for ORR and OER. J. Catal. 371, 185 (2019).CrossRef H. Fang, T. Huang, Y. Sun, B. Kang, D. Liang, S. Yao, J. Yu, M.M. Dinesh, S. Wu, J.Y. Lee, and S. Mao, Metal–organic framework-derived core-shell-structured nitrogen-doped CoCx/FeCo@C hybrid supported by reduced graphene oxide sheets as high performance bifunctional electrocatalysts for ORR and OER. J. Catal. 371, 185 (2019).CrossRef
40.
Zurück zum Zitat C. Petit, B. Mendoza, and T.J. Bandosz, Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem 11, 3678 (2010).CrossRef C. Petit, B. Mendoza, and T.J. Bandosz, Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem 11, 3678 (2010).CrossRef
41.
Zurück zum Zitat M. Jahan, Z. Liu, and K.P. Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363 (2013).CrossRef M. Jahan, Z. Liu, and K.P. Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363 (2013).CrossRef
42.
Zurück zum Zitat H. Luo, W.-J. Jiang, S. Niu, X. Zhang, Y. Zhang, L.-P. Yuan, C. He, and J.-S. Hu, Self-catalyzed growth of Co–N–C nanobrushes for efficient rechargeable Zn-air batteries. Small 16, 2001171 (2020).CrossRef H. Luo, W.-J. Jiang, S. Niu, X. Zhang, Y. Zhang, L.-P. Yuan, C. He, and J.-S. Hu, Self-catalyzed growth of Co–N–C nanobrushes for efficient rechargeable Zn-air batteries. Small 16, 2001171 (2020).CrossRef
43.
Zurück zum Zitat S. Liu, H. Zhang, Q. Zhao, X. Zhang, R. Liu, X. Ge, G. Wang, H. Zhao, and W. Cai, Metal–organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon 106, 74 (2016).CrossRef S. Liu, H. Zhang, Q. Zhao, X. Zhang, R. Liu, X. Ge, G. Wang, H. Zhao, and W. Cai, Metal–organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon 106, 74 (2016).CrossRef
44.
Zurück zum Zitat X.-H. Yan, P. Prabhu, H. Xu, Z. Meng, T. Xue, and J.-M. Lee, Recent progress of metal carbides encapsulated in carbon-based materials for electrocatalysis of oxygen reduction reaction. Small Methods 4, 1900575 (2019).CrossRef X.-H. Yan, P. Prabhu, H. Xu, Z. Meng, T. Xue, and J.-M. Lee, Recent progress of metal carbides encapsulated in carbon-based materials for electrocatalysis of oxygen reduction reaction. Small Methods 4, 1900575 (2019).CrossRef
45.
Zurück zum Zitat C. Yang, S. Zai, Y. Zhou, L. Du, and Q. Jiang, Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv. Funct. Mater. 29, 1901949 (2019).CrossRef C. Yang, S. Zai, Y. Zhou, L. Du, and Q. Jiang, Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv. Funct. Mater. 29, 1901949 (2019).CrossRef
46.
Zurück zum Zitat B. Tang, S. Wang, R. Li, X. Gou, and J. Long, Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction. J. Power Sources 425, 76 (2019).CrossRef B. Tang, S. Wang, R. Li, X. Gou, and J. Long, Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction. J. Power Sources 425, 76 (2019).CrossRef
47.
Zurück zum Zitat Y. Song, X. Zhang, X. Cui, and J. Shi, The ORR kinetics of ZIF-derived Fe–N–C electrocatalysts. J Catal 372, 174 (2019).CrossRef Y. Song, X. Zhang, X. Cui, and J. Shi, The ORR kinetics of ZIF-derived Fe–N–C electrocatalysts. J Catal 372, 174 (2019).CrossRef
48.
Zurück zum Zitat Y. Zhang, P. Wang, J. Yang, K. Li, X. Long, M. Li, K. Zhang, and J. Qiu, Fabrication of core-shell nanohybrid derived from iron-based metal–organic framework grappled on nitrogen-doped graphene for oxygen reduction reaction. Chem. Eng. J. 401, 126001 (2020).CrossRef Y. Zhang, P. Wang, J. Yang, K. Li, X. Long, M. Li, K. Zhang, and J. Qiu, Fabrication of core-shell nanohybrid derived from iron-based metal–organic framework grappled on nitrogen-doped graphene for oxygen reduction reaction. Chem. Eng. J. 401, 126001 (2020).CrossRef
49.
Zurück zum Zitat Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, and J. Chen, Metal–organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 4, 1400337 (2014).CrossRef Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, and J. Chen, Metal–organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 4, 1400337 (2014).CrossRef
50.
Zurück zum Zitat Y. Zhang, P. Wang, J. Yang, S. Lu, K. Li, G. Liu, Y. Duan, and J. Qiu, Decorating ZIF-67-derived cobalt-nitrogen doped carbon nanocapsules on 3D carbon frameworks for efficient oxygen reduction and oxygen evolution. Carbon 177, 344 (2021).CrossRef Y. Zhang, P. Wang, J. Yang, S. Lu, K. Li, G. Liu, Y. Duan, and J. Qiu, Decorating ZIF-67-derived cobalt-nitrogen doped carbon nanocapsules on 3D carbon frameworks for efficient oxygen reduction and oxygen evolution. Carbon 177, 344 (2021).CrossRef
51.
Zurück zum Zitat J. Xue, Y. Li, and J. Hu, Nanoporous bimetallic Zn/Fe–N–C for efficient oxygen reduction in acidic and alkaline media. J. Mater. Chem. 8, 7145 (2020).CrossRef J. Xue, Y. Li, and J. Hu, Nanoporous bimetallic Zn/Fe–N–C for efficient oxygen reduction in acidic and alkaline media. J. Mater. Chem. 8, 7145 (2020).CrossRef
52.
Zurück zum Zitat Y. Zhang, N. Zhang, P. Wang, L. Shen, K. Li, S. Li, M. Yang, and P. He, A novel 3D hybrid carbon-based conductive network constructed by bimetallic MOF-derived CNTs embedded nitrogen-doped carbon framework for oxygen reduction reaction. Int. J. Hydrog. Energy 47, 5474 (2022).CrossRef Y. Zhang, N. Zhang, P. Wang, L. Shen, K. Li, S. Li, M. Yang, and P. He, A novel 3D hybrid carbon-based conductive network constructed by bimetallic MOF-derived CNTs embedded nitrogen-doped carbon framework for oxygen reduction reaction. Int. J. Hydrog. Energy 47, 5474 (2022).CrossRef
53.
Zurück zum Zitat X. Chen, N. Wang, K. Shen, Y. Xie, Y. Tan, and Y. Li, MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces 11, 25976 (2019).CrossRef X. Chen, N. Wang, K. Shen, Y. Xie, Y. Tan, and Y. Li, MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces 11, 25976 (2019).CrossRef
54.
Zurück zum Zitat Y. Zhang, M. Yang, P. Wang, K. Li, S. Li, Z. Zhang, X. He, and Y. Duan, Co/N-codoped carbon nanotube hollow polyhedron hybrid derived from salt-encapsulated core-shell ZIF-8@ZIF-67 for efficient oxygen reduction reaction. J. Alloys Compd. 904, 164083 (2022).CrossRef Y. Zhang, M. Yang, P. Wang, K. Li, S. Li, Z. Zhang, X. He, and Y. Duan, Co/N-codoped carbon nanotube hollow polyhedron hybrid derived from salt-encapsulated core-shell ZIF-8@ZIF-67 for efficient oxygen reduction reaction. J. Alloys Compd. 904, 164083 (2022).CrossRef
55.
Zurück zum Zitat E. Zhang, Y. Xie, S. Ci, J. Jia, P. Cai, L. Yi, and Z. Wen, Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks. J. Mater. Chem. A A4, 17288 (2016).CrossRef E. Zhang, Y. Xie, S. Ci, J. Jia, P. Cai, L. Yi, and Z. Wen, Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks. J. Mater. Chem. A A4, 17288 (2016).CrossRef
56.
Zurück zum Zitat W. Xie, Y. Song, S. Li, J. Li, Y. Yang, W. Liu, M. Shao, and M. Wei, Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction. Adv. Funct. Mater. 29, 1906477 (2019).CrossRef W. Xie, Y. Song, S. Li, J. Li, Y. Yang, W. Liu, M. Shao, and M. Wei, Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction. Adv. Funct. Mater. 29, 1906477 (2019).CrossRef
57.
Zurück zum Zitat S. Chen, L. Ma, S. Wu, S. Wang, Z. Li, A.A. Emmanuel, M.R. Huqe, C. Zhi, and J.A. Zapien, Uniform virus-like Co–N–Cs electrocatalyst derived from prussian blue analog for stretchable fiber-shaped Zn-air batteries. Adv. Funct. Mater. 30, 1908945 (2020).CrossRef S. Chen, L. Ma, S. Wu, S. Wang, Z. Li, A.A. Emmanuel, M.R. Huqe, C. Zhi, and J.A. Zapien, Uniform virus-like Co–N–Cs electrocatalyst derived from prussian blue analog for stretchable fiber-shaped Zn-air batteries. Adv. Funct. Mater. 30, 1908945 (2020).CrossRef
58.
Zurück zum Zitat H.A. Gasteiger, S.S. Kocha, B. Sompalli, and F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9 (2005).CrossRef H.A. Gasteiger, S.S. Kocha, B. Sompalli, and F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9 (2005).CrossRef
Metadaten
Titel
Multidimensional Hierarchical Hybrid Derived from Carbon-Based Microsphere-Supported Bimetallic Organic Frameworks Linked with Graphene Oxide for Efficient Oxygen Reduction Reaction
verfasst von
Yating Zhang
Pei He
Nana Zhang
Dongxian Zhuo
Xue Wang
Xiaobo Wang
Zhenghan Kong
Yanping Hu
Publikationsdatum
13.04.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10398-7

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe

Neuer Inhalt