Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

17.03.2023 | Original Research Article

Effects of (Ag, Ta) Doping on the Microstructure and Dielectric Properties of Titanium Dioxide Functional Ceramics

verfasst von: Jiao-Jiao Ma, Yuan Gao, Yong Chen, Mao-Hua Wang

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Colossal permittivity materials have aroused great interest due to their unique advantages in high-performance capacitors and micro-electronic devices. Nevertheless, the unbalance of their dielectric constant and dielectric loss impedes their application. The present work describes a study of the structure and dielectric properties of Ta0.02AgxTi0.98-xO2 (0 ≤ x ≤ 0.08) (TAT) ceramics synthesized through the sol–gel process and the solid-state reaction method. The impacts of (Ag, Ta) additives on the microstructure and electrical properties of the TiO2 ceramic have been studied by x-ray diffraction, photoluminescence emission spectroscopy, and scanning electron microscopy. In the light of the experimental results, it can be concluded that the addition of Ta5+ can restrict the solid solution limits of Ag+ in TiO2 , while second phases can form when both Ta and Ag are doped. The scanning electron microscopy images reveal that doping TAT ceramics with Ag not only increases densification but also alters the fracture surface from transcrystalline to intergranular. The co-doped samples with x ≥ 0.04 doping level exhibit colossal permittivity more than 104 and a dielectric loss tangent less than 2.5. The Ag dopant is discovered to have a substantial influence on the dielectric properties of Ta-doped TiO2 ceramics. The Ta0.02Ag0.08Ti0.9O2 ceramics have a dielectric permittivity of 8.5 × 103 (tested at 1 kHz) and a dielectric loss tangent of 1.24 (measured at 1 kHz) that meet the specifications of ceramic capacitors. The study has found that the electron-pinned defect-dipoles were responsible for the massive dielectric permittivity mechanism in co-doped TiO2 ceramics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.C. Homes and T. Vogt, Colossal permittivity materials: doping for superior dielectrics. Nat. Mater. 12, 782 (2013).CrossRef C.C. Homes and T. Vogt, Colossal permittivity materials: doping for superior dielectrics. Nat. Mater. 12, 782 (2013).CrossRef
2.
Zurück zum Zitat S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, and A. Loidl, The route to resource-efficient novel material. Nat. Mater. 10, 899 (2011).CrossRef S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, and A. Loidl, The route to resource-efficient novel material. Nat. Mater. 10, 899 (2011).CrossRef
3.
Zurück zum Zitat Z.W. Li, X. Luo, W.J. Wu, and J.G. Wu, Niobium and divalent-modified titanium dioxide ceramics: colossal permittivity and composition design. J. Am. Ceram. Soc. 100, 3004 (2017).CrossRef Z.W. Li, X. Luo, W.J. Wu, and J.G. Wu, Niobium and divalent-modified titanium dioxide ceramics: colossal permittivity and composition design. J. Am. Ceram. Soc. 100, 3004 (2017).CrossRef
4.
Zurück zum Zitat W. Dong, D.H. Chen, W.B. Hu, T.J. Frankcombe, H. Chen, C. Zhou, Z.X. Fu, X.Y. Wei, Z. Xu, Z.F. Liu, Y.X. Li, and Y. Liu, Colossal permittivity behavior and its origin in rutile (Mg1/3Ta2/3) xTi1-xO2. Sci. Rep. 7, 1 (2017).CrossRef W. Dong, D.H. Chen, W.B. Hu, T.J. Frankcombe, H. Chen, C. Zhou, Z.X. Fu, X.Y. Wei, Z. Xu, Z.F. Liu, Y.X. Li, and Y. Liu, Colossal permittivity behavior and its origin in rutile (Mg1/3Ta2/3) xTi1-xO2. Sci. Rep. 7, 1 (2017).CrossRef
5.
Zurück zum Zitat P. Thongbai, S. Tangwancharoen, T. Yamwong, and S. Maensiri, Dielectric relaxation and dielectric response mechanism in (Li, Ti)-doped NiO ceramics. J. Phys. Condens. Matter. 20, 395227 (2008).CrossRef P. Thongbai, S. Tangwancharoen, T. Yamwong, and S. Maensiri, Dielectric relaxation and dielectric response mechanism in (Li, Ti)-doped NiO ceramics. J. Phys. Condens. Matter. 20, 395227 (2008).CrossRef
6.
Zurück zum Zitat D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002).CrossRef D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002).CrossRef
7.
Zurück zum Zitat B.G. Kim, S.M. Cho, T.Y. Kim, and H.M. Jang, Giant dielectric permittivity observed in Pb-based perovskite ferroelectrics. Phys. Rev. Lett. 86, 3404 (2001).CrossRef B.G. Kim, S.M. Cho, T.Y. Kim, and H.M. Jang, Giant dielectric permittivity observed in Pb-based perovskite ferroelectrics. Phys. Rev. Lett. 86, 3404 (2001).CrossRef
8.
Zurück zum Zitat G.F. Yao, X.H. Wang, Y.Y. Wu, and L.T. Li, Nb-doped 09BaTiO3–01(Bi0.5Na0.5)TiO3 Ceramics with stable dielectric properties at High temperature. J. Am. Ceram. Soc. 95, 614 (2012).CrossRef G.F. Yao, X.H. Wang, Y.Y. Wu, and L.T. Li, Nb-doped 09BaTiO3–01(Bi0.5Na0.5)TiO3 Ceramics with stable dielectric properties at High temperature. J. Am. Ceram. Soc. 95, 614 (2012).CrossRef
9.
Zurück zum Zitat S. Manna, and S.K. De, Giant dielectric permittivity observed in Li and Zr co-doped NiO. Solid. State. Commun. 150, 399 (2010).CrossRef S. Manna, and S.K. De, Giant dielectric permittivity observed in Li and Zr co-doped NiO. Solid. State. Commun. 150, 399 (2010).CrossRef
10.
Zurück zum Zitat L.J. Liu, H.Q. Fan, P.Y. Fang, and X.L. Chen, Sol–gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater. Res. Bull. 43, 1800 (2008).CrossRef L.J. Liu, H.Q. Fan, P.Y. Fang, and X.L. Chen, Sol–gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater. Res. Bull. 43, 1800 (2008).CrossRef
11.
Zurück zum Zitat J. Boonlakhorn, and P. Thongbai, Effect of annealing in O2 and mechanisms contributing to the overall loss tangent of CaCu3Ti4O12 ceramics. J. Electron. Mater. 44, 3687 (2015).CrossRef J. Boonlakhorn, and P. Thongbai, Effect of annealing in O2 and mechanisms contributing to the overall loss tangent of CaCu3Ti4O12 ceramics. J. Electron. Mater. 44, 3687 (2015).CrossRef
12.
Zurück zum Zitat E.J.J. Mallmann, M.A.S. Silva, A.S.B. Sombra, M.A. Botelho, S.E. Mazzetto, A.S.D.E. Menezes, A.F.L. Almeida, and P.B.A. Fechine, Dielectric Properties of Ca07Bi0.3Ti0.7Cr0.3O3 (CBTC)–CaCu3Ti4O1.2 (CCTO) Composite. J. Electron. Mater. 44, 295 (2015).CrossRef E.J.J. Mallmann, M.A.S. Silva, A.S.B. Sombra, M.A. Botelho, S.E. Mazzetto, A.S.D.E. Menezes, A.F.L. Almeida, and P.B.A. Fechine, Dielectric Properties of Ca07Bi0.3Ti0.7Cr0.3O3 (CBTC)–CaCu3Ti4O1.2 (CCTO) Composite. J. Electron. Mater. 44, 295 (2015).CrossRef
13.
Zurück zum Zitat W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, and S. Maensiri, Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics. Mater. Des. 123, 15 (2017).CrossRef W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, and S. Maensiri, Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics. Mater. Des. 123, 15 (2017).CrossRef
14.
Zurück zum Zitat W. Tuichai, S. Danwittayakul, P. Srepusharawoot, P. Thongbai, and S. Maensiri, Giant dielectric permittivity and electronic structure in (A3+, Nb5+) co-doped TiO2 (A= Al, Ga and In). Ceram. Int. 43, S265 (2017).CrossRef W. Tuichai, S. Danwittayakul, P. Srepusharawoot, P. Thongbai, and S. Maensiri, Giant dielectric permittivity and electronic structure in (A3+, Nb5+) co-doped TiO2 (A= Al, Ga and In). Ceram. Int. 43, S265 (2017).CrossRef
15.
Zurück zum Zitat M.F. Yan, and W.W. Rhodes, Preparation and properties of TiO2 varistors. Appl. Phys. Lett. 40, 536 (1982).CrossRef M.F. Yan, and W.W. Rhodes, Preparation and properties of TiO2 varistors. Appl. Phys. Lett. 40, 536 (1982).CrossRef
16.
Zurück zum Zitat X. Liu, D. Kepaptsoglou, Z. Gao, A. Thomas, K. Maji, E. Guilmeau, F. Azough, Q.M. Ramasse, and R. Freer, Controlling the thermoelectric properties of Nb-doped TiO2 ceramics through engineering defect structures. ACS. Appl. Mater. Interfaces. 13, 57326 (2021).CrossRef X. Liu, D. Kepaptsoglou, Z. Gao, A. Thomas, K. Maji, E. Guilmeau, F. Azough, Q.M. Ramasse, and R. Freer, Controlling the thermoelectric properties of Nb-doped TiO2 ceramics through engineering defect structures. ACS. Appl. Mater. Interfaces. 13, 57326 (2021).CrossRef
17.
Zurück zum Zitat S.Y. Jung, T.J. Ha, W.S. Seo, Y.S. Lim, S. Shin, H.H. Cho, and H.H. Park, Thermoelectric properties of Nb-doped ordered mesoporous TiO2. J. Electron. Mater. 40, 652 (2011).CrossRef S.Y. Jung, T.J. Ha, W.S. Seo, Y.S. Lim, S. Shin, H.H. Cho, and H.H. Park, Thermoelectric properties of Nb-doped ordered mesoporous TiO2. J. Electron. Mater. 40, 652 (2011).CrossRef
18.
Zurück zum Zitat W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, and J.W. Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821 (2013).CrossRef W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, and J.W. Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821 (2013).CrossRef
19.
Zurück zum Zitat W. Tuichai, S. Danwittayakul, N. Chanlek, and P. Thongbai, Nonlinear current-voltage and giant dielectric properties of Al3+ and Ta5+ co-doped TiO2 ceramics. Mater. Res. Bull. 116, 137 (2019).CrossRef W. Tuichai, S. Danwittayakul, N. Chanlek, and P. Thongbai, Nonlinear current-voltage and giant dielectric properties of Al3+ and Ta5+ co-doped TiO2 ceramics. Mater. Res. Bull. 116, 137 (2019).CrossRef
20.
Zurück zum Zitat H. Peng, P.F. Liang, D. Wu, X.B. Zhou, Z.H. Peng, Y.C. Xiang, X.L. Chao, and Z.P. Yang, Simultaneous realization of broad temperature stability range and outstanding dielectric performance in (Ag+, Ta5+) co–doped TiO2 ceramics. J. Alloys. Compd. 783, 423 (2019).CrossRef H. Peng, P.F. Liang, D. Wu, X.B. Zhou, Z.H. Peng, Y.C. Xiang, X.L. Chao, and Z.P. Yang, Simultaneous realization of broad temperature stability range and outstanding dielectric performance in (Ag+, Ta5+) co–doped TiO2 ceramics. J. Alloys. Compd. 783, 423 (2019).CrossRef
21.
Zurück zum Zitat A.A. Ashkarran, M. Ghavamipour, H. Hamidinezhad, and H. Haddadi, Enhanced visible light-induced hydrophilicity in sol–gel-derived Ag–TiO2 hybrid nanolayers. Res. Chem. Intermed. 4, 7299 (2015).CrossRef A.A. Ashkarran, M. Ghavamipour, H. Hamidinezhad, and H. Haddadi, Enhanced visible light-induced hydrophilicity in sol–gel-derived Ag–TiO2 hybrid nanolayers. Res. Chem. Intermed. 4, 7299 (2015).CrossRef
22.
Zurück zum Zitat X.J. Cheng, Z.W. Li, and J.G. Wu, Colossal permittivity in ceramics of TiO2 Co-doped with niobium and trivalent cation. J. Mater. Chem. A. Mater. 3, 5805 (2015).CrossRef X.J. Cheng, Z.W. Li, and J.G. Wu, Colossal permittivity in ceramics of TiO2 Co-doped with niobium and trivalent cation. J. Mater. Chem. A. Mater. 3, 5805 (2015).CrossRef
23.
Zurück zum Zitat Z.W. Li, J.G. Wu, D.Q. Xiao, J.G. Zhu, and W.J. Wu, Colossal permittivity in titanium dioxide ceramics modified by tantalum and trivalent elements. Acta. Mater. 103, 243 (2016).CrossRef Z.W. Li, J.G. Wu, D.Q. Xiao, J.G. Zhu, and W.J. Wu, Colossal permittivity in titanium dioxide ceramics modified by tantalum and trivalent elements. Acta. Mater. 103, 243 (2016).CrossRef
24.
Zurück zum Zitat C. Zhao, Z. Li, and J. Wu, Role of trivalent acceptors and pentavalent donors in colossal permittivity of titanium dioxide ceramics. J. Mater. Chem. C. Mater. 7, 4235 (2019).CrossRef C. Zhao, Z. Li, and J. Wu, Role of trivalent acceptors and pentavalent donors in colossal permittivity of titanium dioxide ceramics. J. Mater. Chem. C. Mater. 7, 4235 (2019).CrossRef
25.
Zurück zum Zitat Y.H. Zhang, and J. Han, Microstructure and temperature coefficient of resistivity for ZnO ceramics doped with Al2O3. Mater. Lett. 60, 2522 (2006).CrossRef Y.H. Zhang, and J. Han, Microstructure and temperature coefficient of resistivity for ZnO ceramics doped with Al2O3. Mater. Lett. 60, 2522 (2006).CrossRef
26.
Zurück zum Zitat S. Chao, and F. Dogan, Effects of manganese doping on the dielectric properties of titanium dioxide ceramics. J. Am. Ceram. Soc. 94, 179 (2011).CrossRef S. Chao, and F. Dogan, Effects of manganese doping on the dielectric properties of titanium dioxide ceramics. J. Am. Ceram. Soc. 94, 179 (2011).CrossRef
27.
Zurück zum Zitat X.F. Lei, X.X. Xue, and H. Yang, Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Appl. Surf. Sci. 321, 396 (2014).CrossRef X.F. Lei, X.X. Xue, and H. Yang, Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Appl. Surf. Sci. 321, 396 (2014).CrossRef
28.
Zurück zum Zitat T. Ghrib, M.H.A. Mhareb, M.I. Sayyed, Y.S.M. Alajerami, N. Dwaikat, A. BenAli, and M.A. Gondal, Structural, optical and radiation shielding properties of zirconium–titanium–thallium ternary oxide (05ZrO2-(0.5–x)TiO2-xTl2O3). Ceram. Int. 47, 21837 (2021).CrossRef T. Ghrib, M.H.A. Mhareb, M.I. Sayyed, Y.S.M. Alajerami, N. Dwaikat, A. BenAli, and M.A. Gondal, Structural, optical and radiation shielding properties of zirconium–titanium–thallium ternary oxide (05ZrO2-(0.5–x)TiO2-xTl2O3). Ceram. Int. 47, 21837 (2021).CrossRef
29.
Zurück zum Zitat M. Abushada, W. Khana, S. Naseemb, S. Husaina, M. Nadeemb, and A. Ansari, Influence of Mn doping on microstructure, optical, dielectric and magnetic properties of BiFeO3 nanoceramics synthesized via sol–gel method. Ceram. Int. 45, 7437 (2019).CrossRef M. Abushada, W. Khana, S. Naseemb, S. Husaina, M. Nadeemb, and A. Ansari, Influence of Mn doping on microstructure, optical, dielectric and magnetic properties of BiFeO3 nanoceramics synthesized via sol–gel method. Ceram. Int. 45, 7437 (2019).CrossRef
30.
Zurück zum Zitat L. Wang, X.D. Liu, X.G. Bi, Z.X. Ma, J.S. Li, and X.D. Sun, Origin of colossal dielectric permittivity in (Nb+Ga) co-doped TiO2 single crystals. Cryst. Growth. Des. 21, 5283 (2021).CrossRef L. Wang, X.D. Liu, X.G. Bi, Z.X. Ma, J.S. Li, and X.D. Sun, Origin of colossal dielectric permittivity in (Nb+Ga) co-doped TiO2 single crystals. Cryst. Growth. Des. 21, 5283 (2021).CrossRef
31.
Zurück zum Zitat P.F. Liang, J. Zhu, D. Wu, H. Peng, X.L. Chao, and Z.P. Yang, Good dielectric performance and broadband dielectric polarization in Ag, Nb co-doped TiO2. J. Am. Ceram. Soc. 104, 2702 (2021).CrossRef P.F. Liang, J. Zhu, D. Wu, H. Peng, X.L. Chao, and Z.P. Yang, Good dielectric performance and broadband dielectric polarization in Ag, Nb co-doped TiO2. J. Am. Ceram. Soc. 104, 2702 (2021).CrossRef
32.
Zurück zum Zitat W. Dong, W.B. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, and Y. Liu, Colossal dielectric behavior of Ga+ Nb co-doped rutile TiO2. ACS. Appl. Mater. Interfaces. 7, 25321 (2015).CrossRef W. Dong, W.B. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, and Y. Liu, Colossal dielectric behavior of Ga+ Nb co-doped rutile TiO2. ACS. Appl. Mater. Interfaces. 7, 25321 (2015).CrossRef
33.
Zurück zum Zitat V. Vidyadharan, P. Vasudevan, S. Karthika, C. Joseph, N.V. Unnikrishnan, and P.R. Biju, Structural, optical and AC electrical properties of Ce3+-doped TiO2–SiO2 matrices. J. Electron. Mater. 44, 2754 (2015).CrossRef V. Vidyadharan, P. Vasudevan, S. Karthika, C. Joseph, N.V. Unnikrishnan, and P.R. Biju, Structural, optical and AC electrical properties of Ce3+-doped TiO2–SiO2 matrices. J. Electron. Mater. 44, 2754 (2015).CrossRef
34.
Zurück zum Zitat R. Nassera, W.B.H. Othmena, and H. Elhouichet, Effect of Sb doping on the electrical and dielectric properties of ZnO nanocrystals. Ceram. Int. 45, 8000 (2019).CrossRef R. Nassera, W.B.H. Othmena, and H. Elhouichet, Effect of Sb doping on the electrical and dielectric properties of ZnO nanocrystals. Ceram. Int. 45, 8000 (2019).CrossRef
35.
Zurück zum Zitat M.M. Hassan, W. Khan, A. Azam, and A.H. Naqvi, Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J. Ind. Eng. Chem. 21, 283 (2015).CrossRef M.M. Hassan, W. Khan, A. Azam, and A.H. Naqvi, Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J. Ind. Eng. Chem. 21, 283 (2015).CrossRef
Metadaten
Titel
Effects of (Ag, Ta) Doping on the Microstructure and Dielectric Properties of Titanium Dioxide Functional Ceramics
verfasst von
Jiao-Jiao Ma
Yuan Gao
Yong Chen
Mao-Hua Wang
Publikationsdatum
17.03.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10333-w

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe