Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

17.03.2023 | Original Research Article

Thermal Performance of AlN-Coated High-Power LED Optimized Using Taguchi Statistical Approach

verfasst von: Chien-Chung Liu, Maw-Tyan Sheen, Feng-Ming Chen, Ming-Der Jean

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Effective cooling leads to the integration of nanoscale coating and electronic components in light-emitting diode (LED) modules, because their excellent heat dissipation capacity and low thermal resistance strengthen their performance and reliability. This study analyzes and compares the electrostatic spraying process of aluminum nitride (AlN) ceramic substrate preparation methods (thin-film, thick-film, crystal structure, and AlN ratio) by scanning electron microscopy and x-ray photoelectron spectroscopy. High-power LED cooling modules are used in the Taguchi method for the cooling effect of the Cu and Al substrate temperature. Heat flux characteristics are established through the optimal design of the LED module temperature to obtain the optimum factor levels. The optimum LED assembly arrangement is 0.3 W × 4, made of an Al substrate, at a temperature of 180°C, thickness of 5 mm, spraying time of 20 s, reciprocating speed of 55 mm/s, spray flow rate of 3 cc/s, resin:AlN ratio of 1:4, and baking time of 25 min. The study results, according to the L18 orthogonal array of the optimal design module, showed that the difference between the maximum and minimum average temperatures was 4.83°C. The variance analysis showed the significant effects of the LED module temperature factors. The percentage contributions of the resin:AlN ratio, material, spraying temperature, reciprocating spray speed, and thickness are 41%, 16%, 12%, 11%, and 10%, respectively; these five factors accounted for more than 90% of the total significant effect. Additionally, the optimal design and commercially available 7.2-W power modules are compared; the average substrate temperatures were 66 and 82°C, respectively, and the luminous flux was 1499 and 1250 lm, respectively. The Taguchi statistical approach can effectively enhance the heat dissipation efficiency, provide high heat transfer capability and rapid cooling effects, and improve the crystal quality of AlN. Its application can hence achieve process simplification, precision design, easy production, and green production processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Jiu, H. Fan, and W. Wang, Investigation of a novel natural convection heat sink for LEDs based on U-shaped mini-heat pipe arrays. Appl. Therm. Eng. 204, 118000 (2022).CrossRef Y. Jiu, H. Fan, and W. Wang, Investigation of a novel natural convection heat sink for LEDs based on U-shaped mini-heat pipe arrays. Appl. Therm. Eng. 204, 118000 (2022).CrossRef
2.
Zurück zum Zitat W.-X. Chu, Y.-W. Chang, H. Yi-Yu, and C.-C. Wang, Thermal performance analysis and heat transfer enhancement study in an antminer mining machine. J. Therm. Sci Eng. 13(2), 021011 (2021).CrossRef W.-X. Chu, Y.-W. Chang, H. Yi-Yu, and C.-C. Wang, Thermal performance analysis and heat transfer enhancement study in an antminer mining machine. J. Therm. Sci Eng. 13(2), 021011 (2021).CrossRef
3.
Zurück zum Zitat A.M.G. Lopes and V.A.F. Costa, Improved radial plane fins heat sink for light-emitting diode lamps cooling. J. Therm. Sci Eng. 12(4), 041012 (2020).CrossRef A.M.G. Lopes and V.A.F. Costa, Improved radial plane fins heat sink for light-emitting diode lamps cooling. J. Therm. Sci Eng. 12(4), 041012 (2020).CrossRef
4.
Zurück zum Zitat S.-J. Park, D. Jang, and K.-S. Lee, Thermal performance improvement of a radial heat sink with a hollow cylinder for LED downlight applications. Int. J. Heat Mass Transf. 89(1), 1184–1189 (2015).CrossRef S.-J. Park, D. Jang, and K.-S. Lee, Thermal performance improvement of a radial heat sink with a hollow cylinder for LED downlight applications. Int. J. Heat Mass Transf. 89(1), 1184–1189 (2015).CrossRef
5.
Zurück zum Zitat M.W. Jeong, S.W. Jeon, and Y. Kim, Optimal thermal design of a horizontal fin heat sink with a modified-opening model mounted on an LED module. Appl. Therm. Eng. 91, 105–115 (2015).CrossRef M.W. Jeong, S.W. Jeon, and Y. Kim, Optimal thermal design of a horizontal fin heat sink with a modified-opening model mounted on an LED module. Appl. Therm. Eng. 91, 105–115 (2015).CrossRef
6.
Zurück zum Zitat P. Kumar, G. Sahu, D. Chatterjee, and S. Khandekar, Copper wick-based loop heat pipe for thermal management of a high-power LED module. Appl. Therm. Eng. 211, 118459 (2022).CrossRef P. Kumar, G. Sahu, D. Chatterjee, and S. Khandekar, Copper wick-based loop heat pipe for thermal management of a high-power LED module. Appl. Therm. Eng. 211, 118459 (2022).CrossRef
7.
Zurück zum Zitat Y.-C. Chung, H.-H. Chung, and S.-H. Lin, Improvement of temperature and optical power of an LED by using microfluidic circulating system of graphene solution. Nanomaterials 11, 1719 (2021).CrossRef Y.-C. Chung, H.-H. Chung, and S.-H. Lin, Improvement of temperature and optical power of an LED by using microfluidic circulating system of graphene solution. Nanomaterials 11, 1719 (2021).CrossRef
8.
Zurück zum Zitat M. Hamidnia, Y. Luo, and X.D. Wang, Application of micro/nano technology for thermal management of high-power LED packaging: a review. Appl. Therm. Eng. 145, 637–651 (2018).CrossRef M. Hamidnia, Y. Luo, and X.D. Wang, Application of micro/nano technology for thermal management of high-power LED packaging: a review. Appl. Therm. Eng. 145, 637–651 (2018).CrossRef
9.
Zurück zum Zitat Z. Mezine, A. Kadri, L. Hamadou, N. Benbrahim, and A. Chaouchi, Electrodeposition of copper oxides (CuxOy) from acetate bath. J. Electroan. Chem. 817, 36–47 (2018).CrossRef Z. Mezine, A. Kadri, L. Hamadou, N. Benbrahim, and A. Chaouchi, Electrodeposition of copper oxides (CuxOy) from acetate bath. J. Electroan. Chem. 817, 36–47 (2018).CrossRef
10.
Zurück zum Zitat Y. Song, L. Liu, D. Liu, X. Song, and J. Cao, Low-temperature bonding of Cu on Si3N4 substrate by using Ti/Cu thin films. Mater. Lett. 320, 132330 (2022).CrossRef Y. Song, L. Liu, D. Liu, X. Song, and J. Cao, Low-temperature bonding of Cu on Si3N4 substrate by using Ti/Cu thin films. Mater. Lett. 320, 132330 (2022).CrossRef
11.
Zurück zum Zitat J. Wu, Y. Cheng, M. Shen, W. Wang, M. Hu, C. Guo, X. Lu, and S. Zhu, High vacuum arc ion plating Cr film for promoting high temperature applicability of Cu. Corros. Sci. 207, 110575 (2022).CrossRef J. Wu, Y. Cheng, M. Shen, W. Wang, M. Hu, C. Guo, X. Lu, and S. Zhu, High vacuum arc ion plating Cr film for promoting high temperature applicability of Cu. Corros. Sci. 207, 110575 (2022).CrossRef
12.
Zurück zum Zitat T. Matsumae, Y. Kurashima, E. Higurashi, K. Nishizono, T. Amano, and H. Takagi, Room temperature bonding of aluminum nitride ceramic and semiconductor substrate. Ceram. Int. 46(16), 25956–25963 (2020).CrossRef T. Matsumae, Y. Kurashima, E. Higurashi, K. Nishizono, T. Amano, and H. Takagi, Room temperature bonding of aluminum nitride ceramic and semiconductor substrate. Ceram. Int. 46(16), 25956–25963 (2020).CrossRef
13.
Zurück zum Zitat N.J.A. binti Jamaludin, and S. Subramani, Thermal performance of LED fixed on CVD processed ZnO thin film on Al substrates at various O2 gas flow rates. AIMS Mater. Sci. 5(2), 246–256 (2018).CrossRef N.J.A. binti Jamaludin, and S. Subramani, Thermal performance of LED fixed on CVD processed ZnO thin film on Al substrates at various O2 gas flow rates. AIMS Mater. Sci. 5(2), 246–256 (2018).CrossRef
14.
Zurück zum Zitat N.J.A. binti Jamaludin, S. Subramani, and M. Devarajan, Thermal and optical performance of chemical vapor deposited zinc oxide thin film as thermal interface material for high power LED. AIMS Mater. Sci. 5(3), 402–413 (2018).CrossRef N.J.A. binti Jamaludin, S. Subramani, and M. Devarajan, Thermal and optical performance of chemical vapor deposited zinc oxide thin film as thermal interface material for high power LED. AIMS Mater. Sci. 5(3), 402–413 (2018).CrossRef
15.
Zurück zum Zitat D. Kim, J. Lee, J. Kim, C.-H. Choi, and W. Chung, Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink. Energy Convers. Manag. 106, 958–963 (2015).CrossRef D. Kim, J. Lee, J. Kim, C.-H. Choi, and W. Chung, Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink. Energy Convers. Manag. 106, 958–963 (2015).CrossRef
16.
Zurück zum Zitat Z.Y. Ong, S. Shanmugan, and D. Mutharasu, Thermal performance of high power LED on boron doped aluminium nitride thin film coated copper substrates. J. Sci. Res. Rep. 5(2), 109–119 (2015). Z.Y. Ong, S. Shanmugan, and D. Mutharasu, Thermal performance of high power LED on boron doped aluminium nitride thin film coated copper substrates. J. Sci. Res. Rep. 5(2), 109–119 (2015).
17.
Zurück zum Zitat A.H. El-Ladan and S. Subramani, Influence of composition ratio on the thermal performance of AlNB nanocomposite for an efficient heat spreading in solid-state lighting package (LED). J. Mater. 33, 2183–2191 (2022). A.H. El-Ladan and S. Subramani, Influence of composition ratio on the thermal performance of AlNB nanocomposite for an efficient heat spreading in solid-state lighting package (LED). J. Mater. 33, 2183–2191 (2022).
18.
Zurück zum Zitat C.-P. Wang, Y.-C. Huang, and H.-Q. Liu, Efficiency improvement of power LED modules using a hybrid aluminum nitride substrate. Microelectron. Eng. 223, 111227 (2020).CrossRef C.-P. Wang, Y.-C. Huang, and H.-Q. Liu, Efficiency improvement of power LED modules using a hybrid aluminum nitride substrate. Microelectron. Eng. 223, 111227 (2020).CrossRef
19.
Zurück zum Zitat Y. Zhang, J. Dai, G. Bai, and H. Zhang, Microstructure and thermal conductivity of AlN coating on Cu substrate deposited by arc ion plating. Mater. Chem. Phys. 241, 122374 (2020).CrossRef Y. Zhang, J. Dai, G. Bai, and H. Zhang, Microstructure and thermal conductivity of AlN coating on Cu substrate deposited by arc ion plating. Mater. Chem. Phys. 241, 122374 (2020).CrossRef
20.
Zurück zum Zitat S. Subramani and M. Devarajan, Structural and surface analysis of chemical vapor deposited boron doped aluminum nitride thin film on aluminum substrates. Mater. Sci. 37(3), 395–403 (2019). S. Subramani and M. Devarajan, Structural and surface analysis of chemical vapor deposited boron doped aluminum nitride thin film on aluminum substrates. Mater. Sci. 37(3), 395–403 (2019).
21.
Zurück zum Zitat S.-W. Hung and T.-K. Chen, Disclosing AlN ceramic substrate process failure mode and effect analysis. Microelectron. Reliab. 103, 113508 (2019).CrossRef S.-W. Hung and T.-K. Chen, Disclosing AlN ceramic substrate process failure mode and effect analysis. Microelectron. Reliab. 103, 113508 (2019).CrossRef
22.
Zurück zum Zitat Y. Lan, Y. Shi, K. Qi, Z. Ren, and H. Liu, Fabrication and characterization of single-phase a-axis AlN ceramic films. Ceram. Int. 44(7), 8257–8262 (2018).CrossRef Y. Lan, Y. Shi, K. Qi, Z. Ren, and H. Liu, Fabrication and characterization of single-phase a-axis AlN ceramic films. Ceram. Int. 44(7), 8257–8262 (2018).CrossRef
23.
Zurück zum Zitat B.-D. Hahn, Y. Kim, C.-W. Ahn, J.-J. Choi, J. Ryu, J.-W. Kim, W.-H. Yoon, D.-S. Park, S.-Y. Yoon, and B. Ma, Fabrication and characterization of aluminum nitride thick film coated on aluminum substrate for heat dissipation. Ceram. Int. 42(16), 18141–18147 (2016).CrossRef B.-D. Hahn, Y. Kim, C.-W. Ahn, J.-J. Choi, J. Ryu, J.-W. Kim, W.-H. Yoon, D.-S. Park, S.-Y. Yoon, and B. Ma, Fabrication and characterization of aluminum nitride thick film coated on aluminum substrate for heat dissipation. Ceram. Int. 42(16), 18141–18147 (2016).CrossRef
24.
Zurück zum Zitat C. Duquenne, M.-P. Besland, P.Y. Tessier, E. Gautron, Y. Scudeller, and D. Averty, Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering. J. Phys. D: Appl. Phys 45, 015301 (2012).CrossRef C. Duquenne, M.-P. Besland, P.Y. Tessier, E. Gautron, Y. Scudeller, and D. Averty, Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering. J. Phys. D: Appl. Phys 45, 015301 (2012).CrossRef
25.
Zurück zum Zitat M. Shatalov, A. Chitnis, P. Yadav, M.F. Hasan, and J. Khan, Thermal analysis of filp-chippackaged 280 nm nitride-based deep ultraviolet light-emitting. Diodes. Appl. Phys. Lett. 86(1), 201109 (2005).CrossRef M. Shatalov, A. Chitnis, P. Yadav, M.F. Hasan, and J. Khan, Thermal analysis of filp-chippackaged 280 nm nitride-based deep ultraviolet light-emitting. Diodes. Appl. Phys. Lett. 86(1), 201109 (2005).CrossRef
26.
Zurück zum Zitat M.-D. Jean, P.-D. Lei, L.-H. Kong, and C.-W. Liu, Aluminum nitride coatings using response surface methodology to optimize the thermal dissipated performance of lightemitting diode modules. AIP Adv. 8, 055106 (2018).CrossRef M.-D. Jean, P.-D. Lei, L.-H. Kong, and C.-W. Liu, Aluminum nitride coatings using response surface methodology to optimize the thermal dissipated performance of lightemitting diode modules. AIP Adv. 8, 055106 (2018).CrossRef
28.
Zurück zum Zitat S.C. Bera, R.V. Singh, and V.K. Garg, Temperature behavior and compensation of light-emitting diode. IEEE Photon. Technol. Lett. 11, 2286–2288 (2005).CrossRef S.C. Bera, R.V. Singh, and V.K. Garg, Temperature behavior and compensation of light-emitting diode. IEEE Photon. Technol. Lett. 11, 2286–2288 (2005).CrossRef
29.
Zurück zum Zitat N. Narendran and Gu. Yimin, Life of LED-based white light sources. IEEE/OSA JDT. 1, 167–171 (2005). N. Narendran and Gu. Yimin, Life of LED-based white light sources. IEEE/OSA JDT. 1, 167–171 (2005).
30.
Zurück zum Zitat K. Kikuchi, Y. Hamashima, and Y. Kobayashi, An approach to predicting LED junction temperatures with fluid and thermal analysis. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 114(6), 888–895 (2005). K. Kikuchi, Y. Hamashima, and Y. Kobayashi, An approach to predicting LED junction temperatures with fluid and thermal analysis. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 114(6), 888–895 (2005).
31.
Zurück zum Zitat CIE Technical Report CIE127–2007, Measurement of LEDs (2007). CIE Technical Report CIE127–2007, Measurement of LEDs (2007).
32.
Zurück zum Zitat R.K. Roy, A Primer on the Taguchi Method (New York: Van Nostrand Reinhold, 1990). R.K. Roy, A Primer on the Taguchi Method (New York: Van Nostrand Reinhold, 1990).
33.
Zurück zum Zitat H. SinghTaguchi, optimization of process parameters: a review and case study. IJAERS I3, 39–41 (2012). H. SinghTaguchi, optimization of process parameters: a review and case study. IJAERS I3, 39–41 (2012).
Metadaten
Titel
Thermal Performance of AlN-Coated High-Power LED Optimized Using Taguchi Statistical Approach
verfasst von
Chien-Chung Liu
Maw-Tyan Sheen
Feng-Ming Chen
Ming-Der Jean
Publikationsdatum
17.03.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10292-2

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe